QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 2766|回复: 9
打印 上一主题 下一主题

虚二次域例两(-5/50)

[复制链接]
字体大小: 正常 放大
lilianjie        

43

主题

4

听众

204

积分

升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    跳转到指定楼层
    1#
    发表于 2012-1-4 17:41 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    本帖最后由 lilianjie 于 2012-1-4 17:54 编辑 ; i* l4 o& s2 q; m2 l
    ' x6 o* X# T- I% z
    Q5:=QuadraticField(-5) ;
    , t5 ~& _6 U8 D& HQ5;
    5 h' z( H# W$ s: J1 O9 V
    4 k& m  x% |- F( ~3 p( o# g- {( mQ<w> :=PolynomialRing(Q5);Q;! M$ D: V7 S# A6 ], M
    EquationOrder(Q5);1 L" a6 \8 v& X* j
    M:=MaximalOrder(Q5) ;
    - Z! V" T9 E3 S, L: [M;
    5 J; f8 {- c5 M5 ]& jNumberField(M);
    % {$ @/ f3 O, u, K0 e& ^S1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;
    / t; P# }$ D1 J$ J" j1 t% @IsQuadratic(Q5);) T+ Y5 D1 g" _( [1 m7 J4 G
    IsQuadratic(S1);8 H' M% X0 T7 k  U
    IsQuadratic(S4);
    ; z3 [: b/ q4 K$ O# @! p% wIsQuadratic(S25);" _6 x8 `" b' J; r! g4 q
    IsQuadratic(S625888888);% A0 \; S1 H: e4 ?
    Factorization(w^2+5);  
    ; }$ K  D0 D& c4 Y" u0 |0 }6 u9 SDiscriminant(Q5) ;
    ( I3 v" v: c" KFundamentalUnit(Q5) ;
    3 @6 H1 Q! ^, ?5 a9 h4 I$ }8 h6 iFundamentalUnit(M);0 ~# L# \2 j' t" J% e- p
    Conductor(Q5) ;
    ' E: v/ W$ m( s6 u( }
    + ^1 a0 B0 w9 X, Y! d  wName(M, -5);& S1 ]1 V! k% h
    Conductor(M);: {  x# I3 ]6 [% F6 i$ q" [  u
    ClassGroup(Q5) ; 4 q: X/ M: t+ u- v! \9 ^* G
    ClassGroup(M);
    + y7 `1 S" G$ y% |( X8 Y& e9 |6 I) WClassNumber(Q5) ;
    6 G' Q+ i4 g, r( LClassNumber(M) ;
    - T* j6 k7 u. \) f' u. ~PicardGroup(M) ;; O0 f+ i  T  C
    PicardNumber(M) ;
    & l$ O9 i& t, t3 g+ S# m, |. R& w1 H2 d
    QuadraticClassGroupTwoPart(Q5);( ^% y/ h  ]: c0 @! ?5 [+ e8 z: I
    QuadraticClassGroupTwoPart(M);# W# @. U) O$ \9 I6 d$ F" G
    NormEquation(Q5, -5) ;: F+ w& B& z6 B# u  O7 D
    NormEquation(M, -5) ;
    : W( Q% d! ]* @1 p3 mQuadratic Field with defining polynomial $.1^2 + 5 over the Rational Field
    . ~9 e/ v0 I9 F/ Z. F& d( L" LUnivariate Polynomial Ring in w over Q5
    ( e3 Y& o9 z" |# |; kEquation Order of conductor 1 in Q5
    2 T! Z& V4 m" w, O- N$ J, p! fMaximal Equation Order of Q56 k% V0 w( ]" u& b
    Quadratic Field with defining polynomial $.1^2 + 5 over the Rational Field
    6 n+ j% h# Q, O* i  a2 oOrder of conductor 625888888 in Q5
    ' k3 w' [* L9 Y2 o" l; gtrue Quadratic Field with defining polynomial $.1^2 + 5 over the Rational Field
    $ Q) b1 `$ G6 N0 T4 ttrue Maximal Equation Order of Q5
    & A3 p( |8 m1 c4 o6 s7 E) r) x6 ptrue Order of conductor 1 in Q5
    . q( ]) f& S( T' E9 ^$ v( z6 K, ]3 `1 t9 F; Gtrue Order of conductor 1 in Q5! W. Z; A* L2 t/ N
    true Order of conductor 1 in Q54 m( e5 ^& X. e9 g
    [4 g# s# n0 q( @/ v: s3 ]# s$ r4 F
        <w - Q5.1, 1>,
    9 }- `& z8 E. Y    <w + Q5.1, 1>5 }# m- B+ P' @* }- W; q. E  P
    ]7 Q8 t, [% s) d, R" I7 O
    -20
    & w, q" u% [( z0 y7 a# `; l6 p' |) v2 c# F5 o5 r7 G: _( H
    >> FundamentalUnit(Q5) ;
    # A7 ?. E$ ~$ ?; e, _/ K; X0 F: p                  ^
    ! M. P* I( a5 t( t8 y2 s% bRuntime error in 'FundamentalUnit': Field must have positive discriminant! z% ^  l3 Q, C3 ~7 ^
    3 R9 w% I1 d9 R- L

    7 k' P8 _8 E0 Q' `& t7 |" z* ?4 T; @>> FundamentalUnit(M);
      K6 j2 M# M, I5 {+ N5 @                  ^9 Y" v# I" W' y: T4 b% F
    Runtime error in 'FundamentalUnit': Field must have positive discriminant
    5 d$ M5 R9 O4 Z; Z) q" r$ _4 [" [& h; @5 f2 J
    20
    , c/ \3 q' Z2 l. Y5 O5 ?3 t( t6 T/ K" F9 O2 f0 E- {
    >> Name(M, -5);
    + X! e  x1 w1 Q7 j2 J, F5 h3 `       ^. s  n2 U! r% X9 u
    Runtime error in 'Name': Argument 2 (-5) should be in the range [1 .. 1]+ [  T9 s; H2 M. C7 i5 K. F

      ~2 L6 n, |3 c0 G4 @* [# H1
    ) ~1 Q  {( {% d- GAbelian Group isomorphic to Z/2& P% w7 h; P0 x# `0 P1 D" ^
    Defined on 1 generator
    / }7 l- d3 ~. s1 C+ x' i- v/ KRelations:
    7 ^  u6 l1 L" u8 ]    2*$.1 = 0
    ( `; S9 w; r" S' @8 s% g# VMapping from: Abelian Group isomorphic to Z/2
    * Z: I" h. b5 H* ^( P4 |* E& TDefined on 1 generator( x, @! t! P. `7 h6 C. L+ g
    Relations:! |* r0 Q4 x+ _4 E% m
        2*$.1 = 0 to Set of ideals of M: Q# |  ^9 p% n/ o8 Z# F2 ~
    Abelian Group isomorphic to Z/2
    # y' A7 P; q6 x" tDefined on 1 generator3 A1 x+ J8 I/ v6 M
    Relations:
    : ?# |) [) K7 @. W' o$ \, I    2*$.1 = 0
    6 k: R  V5 Q9 B( x3 Y$ u% ~Mapping from: Abelian Group isomorphic to Z/2
    ! G+ J1 M  c& n& W) Z% G6 HDefined on 1 generator
    3 N) G$ Z% q% IRelations:
    1 C7 v+ e" j  @2 x* c3 H+ S" _    2*$.1 = 0 to Set of ideals of M. D; D; C! c3 [7 ?& |9 V
    2
    / ^. |/ J% A; r5 {3 m2
    : ~0 P. l) G( Q, R, e$ O( _Abelian Group isomorphic to Z/20 K1 P2 V6 W: |) G/ A2 {# j- z
    Defined on 1 generator
    ' I( p% r8 Z( O- q6 B' sRelations:
    : @1 W0 H9 ]+ Z    2*$.1 = 0
    . t8 {+ d/ J& z3 I: `" O+ ]Mapping from: Abelian Group isomorphic to Z/2
    ! d$ P; M5 k% k. |- b$ zDefined on 1 generator; d2 g% |8 e, M8 `/ ?
    Relations:: ?7 q+ N1 ]! ^# T0 Z& K
        2*$.1 = 0 to Set of ideals of M given by a rule [no inverse]) k0 S, Q  J& v$ j+ f: Z: z
    2
    / |+ c1 q$ p' n( Y1 {Abelian Group isomorphic to Z/2
    $ n# s0 o; g8 Y( z5 x) GDefined on 1 generator; |- P' w" L9 t/ `- S8 a# H- L8 q
    Relations:' s6 A& H+ R  C$ r0 [
        2*$.1 = 0" I# u, o5 t1 A2 N3 K' \
    Mapping from: Abelian Group isomorphic to Z/2
    8 a& H: J" w% w4 B. I, R( _3 zDefined on 1 generator$ W3 S7 F$ t/ J4 I, S* \
    Relations:
    . R* b& d/ x: L. {# t) Y( K    2*$.1 = 0 to Binary quadratic forms of discriminant -20 given by a rule [no
    - Q9 R  @# T& R/ R: b: |inverse]
    & x( I5 V! ~* i  A# F; X; r% Q  QAbelian Group isomorphic to Z/24 B& K# f3 K8 z9 J* m
    Defined on 1 generator: G2 Z5 l" E6 E4 F; s
    Relations:9 E8 t: n6 A  G
        2*$.1 = 0
    ) u4 q" P! w: A  p  SMapping from: Abelian Group isomorphic to Z/2& Z4 d% _) m* O: |( s
    Defined on 1 generator) l2 ~. `( h# X  e" z. `$ V- l
    Relations:& V6 \+ n1 q2 q* E
        2*$.1 = 0 to Binary quadratic forms of discriminant -20 given by a rule [no
    + Q5 _# U; i3 [. j$ p9 Rinverse]
    4 Y, n& V/ [9 b1 Pfalse
    8 w& o3 V- D! V4 Wfalse+ X5 h8 {/ S7 J; C7 v/ i
    ==============
    : c5 B7 I4 X8 ?2 I$ Q1 \9 J1 @6 i* E5 T  u( t% x) ~9 K
    - X6 D; @; e3 J* q
    Q5:=QuadraticField(-50) ;
    ) J3 k2 H# Z5 GQ5;
    $ T- g! Y8 _: Q' h5 E
    * t$ f% [$ \+ w% Z. ?" g9 eQ<w> :=PolynomialRing(Q5);Q;
    % j- n0 V* a/ OEquationOrder(Q5);
    & K+ }- I- ~3 e0 lM:=MaximalOrder(Q5) ;1 t( ?  p* \( {5 v9 J( P! p0 A: e5 {
    M;
    4 T9 p* r3 A$ M1 e# HNumberField(M);
    / a' b6 E3 N7 C" |- X  mS1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;, w5 {1 U# ^/ O- Z- I( T) n
    IsQuadratic(Q5);
    $ q$ R9 `6 U3 o9 }3 TIsQuadratic(S1);0 d* U6 \# o1 F' i/ S
    IsQuadratic(S4);
    ; `) m8 D0 z& V  N' V& C1 ~7 yIsQuadratic(S25);
    / M" z% y4 f! C* h- {- XIsQuadratic(S625888888);
    - y% d: G3 B5 I2 JFactorization(w^2+50);  ( D. V, S. `* i
    Discriminant(Q5) ;
    % V* U" P+ E9 {' c; I  p+ mFundamentalUnit(Q5) ;
    ' @  S7 i: K1 b$ a# yFundamentalUnit(M);
    % V! B, `  ^' V, v1 {0 ?; P; J: C& QConductor(Q5) ;* e, a9 i$ U5 {9 j9 X

    . H9 D4 R3 M) \- V# w# \- ZName(M, -50);
    6 h8 @1 _( u* |2 }* E" R! AConductor(M);! w' G* a4 {) T  K9 v
    ClassGroup(Q5) ;
    ) g. [0 u6 J! p7 t2 K- ~ClassGroup(M);
    + r+ Q& y$ Z3 F- g, u4 l/ Q; YClassNumber(Q5) ;# k) h6 ?4 m: q& H
    ClassNumber(M) ;9 F9 o( D7 Z* S
    PicardGroup(M) ;
    - E, u/ G& X) p7 sPicardNumber(M) ;/ q: x  x) \) R7 R
    ' |" D: g# |3 N" Z3 `
    QuadraticClassGroupTwoPart(Q5);" \! Y% r' t6 o9 F( u8 t: u. h5 _
    QuadraticClassGroupTwoPart(M);
    ! N3 J- C; G2 a* lNormEquation(Q5, -50) ;
    $ \2 r% ^# G& X3 i5 g' P* {1 Q( TNormEquation(M, -50) ;
    ) `) M" @/ ~: n) U) w! o" S
      J/ p- J5 q4 {! KQuadratic Field with defining polynomial $.1^2 + 2 over the Rational Field( K, O! L! z, ]1 h: ?
    Univariate Polynomial Ring in w over Q5, E) ]: z+ r) z$ \
    Equation Order of conductor 1 in Q53 x7 j* P2 ^; F) t  q9 f
    Maximal Equation Order of Q5" E  l5 Y7 o0 F
    Quadratic Field with defining polynomial $.1^2 + 2 over the Rational Field$ L8 {* |. U! N
    Order of conductor 625888888 in Q5
    6 x- |# F/ @; r! o( C# ?/ [% t7 Strue Quadratic Field with defining polynomial $.1^2 + 2 over the Rational Field
    1 O- f7 q' T$ k! i3 f1 ^true Maximal Equation Order of Q5; V" u  N0 M0 K
    true Order of conductor 1 in Q5
    2 b0 v$ ]9 R1 W/ E" O* \true Order of conductor 1 in Q5
    8 U. g4 K8 O2 \1 Rtrue Order of conductor 1 in Q53 P% ^- a5 f6 l
    [: V% O$ o: _) v3 E. j) D
        <w - 5*Q5.1, 1>,
    ! W/ K) O& T# R6 Y! l" p    <w + 5*Q5.1, 1>
    + i# Y& _! S, ]) H- r" B]2 Y+ ?1 U) E0 A1 T
    -8
    ) Z2 d, t1 K2 e, d- g3 l/ X0 C$ W, z2 U/ u% ]
    >> FundamentalUnit(Q5) ;
    : O" i) v3 h4 a; L                  ^3 ~& C2 Q1 }& }3 H  D
    Runtime error in 'FundamentalUnit': Field must have positive discriminant" Z. m# P  s! G

    ' a& l# x4 y* |0 l( [' Z* p9 A
    ' c9 Z2 a: O# ]2 T9 y>> FundamentalUnit(M);
    $ _( m) g* K' x; ^; ], [                  ^9 O. e! ?# @5 G7 ^1 @9 n1 |( l) w
    Runtime error in 'FundamentalUnit': Field must have positive discriminant
    1 M( h7 }& \3 N& w4 X7 _% c; s/ t( }- k) P& `$ F
    88 B2 D4 {4 e# i1 x
    ; R5 @% x8 \  P* m
    >> Name(M, -50);5 G8 e. q5 L8 L8 B$ e8 p7 o
           ^+ X& y4 T) N7 x# W1 v
    Runtime error in 'Name': Argument 2 (-50) should be in the range [1 .. 1]$ r$ e5 C, v5 a9 Z$ `; {3 q% i

    " C. u" m+ P; _4 }1% k  q' I! Q- Y5 ^- P4 o( X! p
    Abelian Group of order 1
    # Z# B- f- s2 p( J9 o* P5 eMapping from: Abelian Group of order 1 to Set of ideals of M
    ; r* D! T4 B9 f" e/ CAbelian Group of order 10 f7 H0 @  O3 ~: a2 e' |( s
    Mapping from: Abelian Group of order 1 to Set of ideals of M
    ! _: o% s# E6 N! x4 O! R11 u1 i. B2 i1 k8 z3 Q% N
    1
    ! y' E' a# z4 p  WAbelian Group of order 1
    % i7 A5 i2 w6 qMapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no2 x- x0 s. u9 f+ I# z
    inverse]
    6 P: ?! ~4 @: D8 L) D1
    * m/ j( S: X5 }, uAbelian Group of order 1
    : f# w% \; ]. j- O4 ~* h% dMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant
    ( P6 \$ M1 A$ j% `' ?-8 given by a rule [no inverse]2 b+ i  }6 J+ ]$ S+ E
    Abelian Group of order 1# @4 a) y) G' }2 l, c
    Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant- c, W. M/ D- b0 l6 a. r# e3 V
    -8 given by a rule [no inverse]
    + d; A' n$ o4 {. [  ~2 Gfalse9 C5 k. N; U, I4 c3 {4 U) `
    false; C1 |; l- d6 G- Y: i1 W
    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    看看-1.-3的两种:( p( p: f% f( R. f$ N( X
    # [! N, g: T" ?) s! [* d
    Q5:=QuadraticField(-1) ;6 p/ Q9 s7 N7 a4 A
    Q5;
    3 }/ \# c7 T' C7 E9 Y$ J1 f9 Z7 O8 S/ L+ N0 [- V
    Q<w> :=PolynomialRing(Q5);Q;4 H7 m3 S- e( Q. V2 {( d; l
    EquationOrder(Q5);
    $ r' l1 j3 w/ D4 E- C4 R/ A; w! X1 KM:=MaximalOrder(Q5) ;
    - m; x9 j; f- _2 y# z8 SM;
    5 L( r7 d8 @# C% e+ h1 ]+ f0 MNumberField(M);
    ! c& E4 i. [4 r  jS1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;7 u) H) i& G% p- O( ?$ S% {
    IsQuadratic(Q5);
    % D& u6 C5 J* K6 F% T9 DIsQuadratic(S1);
    ' D2 y: N' a7 v" u0 p/ GIsQuadratic(S4);
    ; T/ `5 x, x% Y. L" v" X4 V; A( kIsQuadratic(S25);+ f8 r3 W) }( i; m$ r* L
    IsQuadratic(S625888888);9 u1 J" Y3 }1 O. i8 ]( f3 G
    Factorization(w^2+1);  
    ' v7 \) f; l7 f- ODiscriminant(Q5) ;6 e3 q6 f4 @- e
    FundamentalUnit(Q5) ;
    & U5 X  y9 r5 N1 U7 b( {. {7 [2 t6 dFundamentalUnit(M);
    & F( h7 ^: Q' M' HConductor(Q5) ;9 K  I, n9 D7 W; A6 [( p

    6 j9 W, G) C! }' q0 }3 iName(M, -1);
    " T( A- O' N9 p0 @, Z, W7 `Conductor(M);$ h. o# O- j/ N& v# V
    ClassGroup(Q5) ; - M% l: O& c: ]; S
    ClassGroup(M);
    - e; N# l/ N7 V1 D9 h( `+ {ClassNumber(Q5) ;
    / l3 h( a6 i9 e+ P; B/ X+ r' d: Q3 K2 rClassNumber(M) ;
    " G5 N: e% N( I$ ]. R, vPicardGroup(M) ;& C1 A# R/ L2 ~$ p3 o( B& `7 R5 N' S3 q
    PicardNumber(M) ;2 @9 M" k9 Q3 J' a( K7 G5 Z! c
    , @! d% m% T* B% F2 z
    QuadraticClassGroupTwoPart(Q5);2 A# Q* B% a9 j8 M5 {  Q6 D# `
    QuadraticClassGroupTwoPart(M);
    : D; V9 U% B  w, J4 iNormEquation(Q5, -1) ;
    + y! H' P+ |& H( q; u+ a) O" jNormEquation(M, -1) ;8 t: I5 s4 z/ p: Z0 ^

    + @3 c  Q% ?7 H; p3 oQuadratic Field with defining polynomial $.1^2 + 1 over the Rational Field
    2 u/ L2 g4 v0 S- U3 ~4 L0 H2 UUnivariate Polynomial Ring in w over Q5
    " w% _: i) P9 [) e8 N5 QEquation Order of conductor 1 in Q5
    / ^# ], Q5 J2 C6 QMaximal Equation Order of Q5
    ) b) ?6 R* A0 M; C7 X* e& dQuadratic Field with defining polynomial $.1^2 + 1 over the Rational Field7 `- ]7 Q+ Y' q/ t: u! w
    Order of conductor 625888888 in Q56 }. h! {6 A" z  o4 E. h
    true Quadratic Field with defining polynomial $.1^2 + 1 over the Rational Field
    + n" }# N" V2 s8 X; L- k1 W0 ytrue Maximal Equation Order of Q5
    3 |" D$ q( {- E, u& `true Order of conductor 1 in Q5
      P3 Q) ]4 N1 h/ k0 Gtrue Order of conductor 1 in Q5" G- \! K7 ]6 u& p9 G/ j7 N5 G
    true Order of conductor 1 in Q5) s# d& T) j7 e; e" \( _
    [5 v; `2 B2 L; M. _- q0 x3 `$ W: y
        <w - Q5.1, 1>,
    : L- n' B% A  ?: Z    <w + Q5.1, 1>
    / N3 S8 T1 Z3 F1 w]
    ; V8 O9 D2 i: X-4
    6 j+ V: |/ D2 f- L; V' \; C
      B# g- L3 ^9 X1 \# v; _& c>> FundamentalUnit(Q5) ;
    3 `, k( n+ n/ \; K5 G' |# ^5 m                  ^+ X& [# ]6 [# M. e8 G; H6 }
    Runtime error in 'FundamentalUnit': Field must have positive discriminant
      }7 p3 b, q) G; v) ?: Z/ ]0 K6 v
    , ]. n; d! T/ y
    >> FundamentalUnit(M);
    + G! l4 J: U& b5 `                  ^
    + r6 l9 @/ l2 _3 ?' Y! e$ }Runtime error in 'FundamentalUnit': Field must have positive discriminant
    ) z0 l& I, y" E4 i  D6 j( S/ N) l
    4
    7 E3 _+ H2 P8 m
    ! K, i$ {+ i# e>> Name(M, -1);
    : {/ i- K* U8 o/ [       ^
    9 N9 W& `6 t; w/ k0 s; Q) HRuntime error in 'Name': Argument 2 (-1) should be in the range [1 .. 1]% p9 i5 B3 u# u2 A) P. J

    ; a8 h& Z0 e+ l1 _1( S7 R3 {9 t8 B" A
    Abelian Group of order 1
    6 c8 N2 u" g! t4 OMapping from: Abelian Group of order 1 to Set of ideals of M% p$ d: E5 y  b& Y8 W# b: i
    Abelian Group of order 1
    0 ^/ y$ j! w' t2 w  |0 t' CMapping from: Abelian Group of order 1 to Set of ideals of M
      B: l% _( t$ K3 J  P1
    * a' t7 j! J# J) E, X0 J1, V5 c" a" ], |& h, o' f1 H! ~9 C
    Abelian Group of order 16 W. i9 B% {8 H, Z- h4 W' x
    Mapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no. e( k( v" j  l; K0 P  H1 K
    inverse]/ U: M8 H# y; k- U4 {1 @& \% A. s
    1! D9 m# j. c# t, ]
    Abelian Group of order 1
    1 k! g. I/ z; DMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant
    1 A2 {$ H8 l, m2 e3 v) |7 \& P-4 given by a rule [no inverse]; m4 Z+ i1 |" m8 _
    Abelian Group of order 1; f0 D3 t7 j5 R2 m$ e! ^( i3 S/ i
    Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant
    ( G( b" t" V) d8 a# Z$ G/ C  \-4 given by a rule [no inverse]" z* i+ p4 M, |, t
    false2 J$ }- Z2 ^& x& Z2 M/ z
    false- G4 m; r9 i( F; d5 Y
    ===============
    # l3 Z- k/ Y2 {; A  u: Y9 e" S4 k, L6 z1 M( m9 O
    Q5:=QuadraticField(-3) ;0 ^& b! }( s, g3 `$ W7 {
    Q5;
    ( }" Q% g% q# C3 z1 k
    " N" G' P! i% g. ZQ<w> :=PolynomialRing(Q5);Q;
    7 @* v' \7 o; w) D. n$ x+ N/ zEquationOrder(Q5);5 J' o2 b5 n! \
    M:=MaximalOrder(Q5) ;5 T( y  }$ d* q7 c) I( N9 e7 P# \) U
    M;
    9 ]# t& E1 `; t6 T8 j. |NumberField(M);
    / F$ |8 S1 _9 B  O# K  s$ I" uS1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;, h. t2 o" _5 ?  Z( K7 P& s, G3 f
    IsQuadratic(Q5);$ C2 e8 W: a6 [" y) p
    IsQuadratic(S1);' m- ~! W9 o8 s$ C( v4 ~/ o; ~
    IsQuadratic(S4);
    % n* t3 v1 Q1 \. [: k5 G4 r0 XIsQuadratic(S25);4 S1 h/ K9 m$ [* Y
    IsQuadratic(S625888888);
    : {# z2 h9 W: ^8 X+ b9 G8 g9 bFactorization(w^2+3);  
    8 b, \4 U5 D# UDiscriminant(Q5) ;
    4 }7 S' w! A6 pFundamentalUnit(Q5) ;
    7 K0 m3 G' B! Q/ B4 VFundamentalUnit(M);
    - v+ q9 I% F  Z- m, ~# SConductor(Q5) ;' _1 J8 a9 H" R
    3 E+ y* B7 h1 g+ u9 p
    Name(M, -3);
    2 V6 [9 r* H7 u* k5 b- R7 D: mConductor(M);0 G. ~3 S9 s) \8 x  v7 c
    ClassGroup(Q5) ;
    7 w* z9 _) @. |7 MClassGroup(M);
    ( E* w4 ?% B& o) T) E% m1 U* gClassNumber(Q5) ;
    * R1 N6 Y8 t( U" E" `; @ClassNumber(M) ;$ B/ x( }4 q+ s1 A5 {3 M
    PicardGroup(M) ;. V3 n. _1 C4 ?
    PicardNumber(M) ;
      ~7 }: x% V3 w0 I  b. @& r, W; b/ ^* n4 i( R
    QuadraticClassGroupTwoPart(Q5);8 z# r# h9 u- j- X& j
    QuadraticClassGroupTwoPart(M);
    " ~4 M+ H; N+ B5 ?' {NormEquation(Q5, -3) ;9 l0 R) `# ]6 j& w: d+ C$ e4 O
    NormEquation(M, -3) ;
    : a; F: d$ E3 z8 L- |0 T) D) v% m/ e' I2 F' {- \
    Quadratic Field with defining polynomial $.1^2 + 3 over the Rational Field
    3 }0 k: H9 ~. [# WUnivariate Polynomial Ring in w over Q5. o* |8 [8 M+ I2 V$ ^: C
    Equation Order of conductor 2 in Q5
    & h  T% {# r' o/ M+ x& wMaximal Order of Q5
    4 m/ _7 ?5 K" r" {9 m5 B* T) q1 qQuadratic Field with defining polynomial $.1^2 + 3 over the Rational Field
    4 l" j  e/ E2 _# H5 f3 ?3 H4 c# NOrder of conductor 625888888 in Q5% l  B: h6 B4 v& w6 v
    true Quadratic Field with defining polynomial $.1^2 + 3 over the Rational Field+ v6 F2 q' \4 ]# @. h& C
    true Maximal Order of Q5/ A2 f3 W* L* l1 |! a/ E* a
    true Order of conductor 16 in Q5
    0 _& Q  v' s( M5 L8 Y" f/ \' Vtrue Order of conductor 625 in Q5
    / W' E$ m0 T( |true Order of conductor 391736900121876544 in Q54 U0 ^: [- F8 y7 @
    [- z' {1 N4 h% V# f! G( ?
        <w - Q5.1, 1>,
    ; B5 Q1 B$ j7 K+ S8 ?! @    <w + Q5.1, 1>: I# ?( J- |( Y! I
    ]- G; w, C4 ~1 M( h5 R5 p+ `9 @& R
    -3
    , @( N* r) e9 R4 ^, m) x. R
    ) y% j( z0 ~: G' D) i) i>> FundamentalUnit(Q5) ;
    . h/ S& Y2 H- p8 [                  ^
    6 v" J# E8 ?9 k( LRuntime error in 'FundamentalUnit': Field must have positive discriminant
    % ~/ J' w7 x# ?8 b6 C+ N4 j1 I3 s' G$ _6 J5 d, b

    0 R) {0 G6 m* o8 g>> FundamentalUnit(M);
    - t1 I/ J" r8 B! z- }                  ^
    + n! q5 j( G8 [' VRuntime error in 'FundamentalUnit': Field must have positive discriminant
    7 v$ O  N: s- p
    % s( K- J, b( D- |3 n3. w  m0 i7 v8 K" ?* _1 b; i; w

    ; v: x/ ^% X5 K- K' b9 X; {>> Name(M, -3);
    " p3 z( N2 o, R0 ^, D/ r       ^
    * e* e7 P/ v6 Z2 g; C; c. ^# PRuntime error in 'Name': Argument 2 (-3) should be in the range [1 .. 1]
    8 j7 P9 B! B& t; l  `1 F
    7 I# h2 i1 }  S( x. g1
    $ v/ w/ `' J$ {Abelian Group of order 1
    ; F( _- g3 a! H/ X' _8 n) QMapping from: Abelian Group of order 1 to Set of ideals of M* a9 w  C0 b3 r: y& u: y
    Abelian Group of order 1
    ; j" L) x4 c( I2 _, [Mapping from: Abelian Group of order 1 to Set of ideals of M
    ' q; q) m2 e1 L1
    ) d& i3 z1 D  f, a  p6 Q: f1
    6 n5 P/ X7 [& `: BAbelian Group of order 1+ ^3 o, T! h/ \% n7 H* M& b
    Mapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no
    : H+ Q! G8 z/ R& }, }inverse]5 B( [, P* p* z/ g+ T9 O6 k
    1
    7 B! v" e1 J4 r. QAbelian Group of order 1
    # ?2 m) [) @* v4 ]+ hMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant2 U7 u, V8 ~' z/ c: \: h% a
    -3 given by a rule [no inverse]" e/ F" a* K" P0 O
    Abelian Group of order 1
    + y% c, t# ?0 A4 T4 q8 EMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant5 A( B& [1 Z5 U* s: b# J+ q
    -3 given by a rule [no inverse]
    / \* e, l' i# J0 sfalse
    6 Y2 m6 A9 }8 s  ?0 K( hfalse
    回复

    使用道具 举报

    74

    主题

    6

    听众

    3289

    积分

    升级  42.97%

  • TA的每日心情
    无聊
    2015-9-4 00:52
  • 签到天数: 374 天

    [LV.9]以坛为家II

    社区QQ达人 邮箱绑定达人 发帖功臣 最具活力勋章

    群组数学建摸协会

    群组Matlab讨论组

    群组小草的客厅

    群组数学建模

    群组LINGO

    回复

    使用道具 举报

    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    本帖最后由 lilianjie 于 2012-1-5 15:20 编辑
    1 _; H/ ^( n& f, L  t
    . ~/ |! ~  ?( N0 z0 z) WDirichlet character
    3 k3 V2 ~# b, L5 T+ d( w' bDirichlet class number formula
    ( S6 j! }0 E8 `5 g0 t' Q) v6 T+ l( P9 ?- V2 u7 ?: n
    虚二次域复点1,实点为0,实二次域复点0,实点为2,实二次域只有两单位根; S1 s, B3 P: N; B8 G$ s
    % Q. M% w/ |' n5 Y) D* s# c9 |: T  R
    -1时,4个单位根1,-1, i, -i,w=4,            N=4,互素(1,3),    (Z/4Z)*------->C*      χ(1mod4)=1,χ(3mod4)=-1,h=4/(2*4)*Σ[1*1+(3*(-1)]=1
    + B$ u, d8 O4 S7 t) p7 A" n% A5 |3 B
    -3时  6个单位根                             N=3  互素(1,2),    (Z/3Z)*------->C*         χ(1mod3)=1,χ(2mod3)=-1,
    5 A* e6 m  V+ g# Oh=-6/(2*3)*Σ[1*1+(2*(-1)]=1
    ; E9 H/ h! S( j# _. K. R. \) m
    ! x- p  q" H. Y-5时  2个单位根                              N=20   N=3  互素(1,3,7,9,11,13,17,19),    (Z/5Z)*------->C*         χ(1mod20)=1,χ(3mod20)=-1, χ(7mod20)=1, χ(9mod20)=1,χ(11mod20)=1,χ(13mod20)=1,χ(17mod20)=1,χ(19mod20)=1,
    # k  G* n- L4 s; ]0 M+ Q: X
    + l1 i7 J  ?+ |9 x- L
    . F& F- F/ T8 `; `# t$ W7 i0 C+ l) @2 y! `; \) M
    h=2/(2*20)*Σ[1*1-3*1-7*1+9*1-11*1-13*1+17*1+19*1]=2
    ) i1 t! S/ P& n( j* z3 b; `4 T
    % u9 ?/ v; z+ t7 Y9 O
    9 p* j- Q3 c8 [4 L; E  {2 ^# s; x# v- e" X+ `
    -50时  个单位根                          N=200
    4 E4 e' B# k: N; H
    回复

    使用道具 举报

    15

    主题

    4

    听众

    113

    积分

    升级  6.5%

  • TA的每日心情
    开心
    2012-1-13 11:49
  • 签到天数: 9 天

    [LV.3]偶尔看看II

    Dirichlet character

    21.JPG (79.18 KB, 下载次数: 219)

    21.JPG

    11.JPG (74.76 KB, 下载次数: 225)

    11.JPG

    回复

    使用道具 举报

    15

    主题

    4

    听众

    113

    积分

    升级  6.5%

  • TA的每日心情
    开心
    2012-1-13 11:49
  • 签到天数: 9 天

    [LV.3]偶尔看看II

    回复

    使用道具 举报

    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    本帖最后由 lilianjie 于 2012-1-9 20:30 编辑 5 _/ ]" {& k# F+ [) z2 `
    $ f- H" P, K8 h& _& _  c
    F := QuadraticField(NextPrime(5));- ?& p$ }  w" I7 r9 s( y

    + {, B  a2 _2 G1 A& L! o' DKK := QuadraticField(7);KK;
    2 G7 Q$ `! M, x$ t, ^# v: l  @K:=MaximalOrder(KK);
    * E; I. p8 L, ^6 m) F  S/ w7 uConductor(KK);
    " {' L$ t5 H" @2 j: dClassGroup(KK) ;
    5 V- j4 u! y' Q1 WQuadraticClassGroupTwoPart(KK) ;
    + x3 f- x0 c( v) X/ ?! sNormEquation(F, 7);
    6 U# w$ A8 Z1 ~5 V; l8 PA:=K!7;A;' o1 Y- ?' X" |! w( f- R# _4 u6 t
    B:=K!14;B;( F. W+ A+ X  D- [5 R
    Discriminant(KK)
    % B5 j0 e6 F2 {" m" z; l$ b' m1 t( E$ X. O7 [
    Quadratic Field with defining polynomial $.1^2 - 7 over the Rational Field3 l& M0 a# Q# g8 ]0 T" _
    288 J' ~7 {! z2 P& W& s
    Abelian Group of order 1
    2 o0 k' ?: ~; }1 h. ?3 uMapping from: Abelian Group of order 1 to Set of ideals of K
    $ y( F& W7 d- X" Z6 fAbelian Group isomorphic to Z/23 t7 a, t5 H7 k8 Z$ k/ ], D3 d
    Defined on 1 generator+ e* p8 a  ?1 {9 g, _7 @$ U
    Relations:# C) e: s; G' S9 |  d& o
        2*$.1 = 0+ J7 ~" c; d! H
    Mapping from: Abelian Group isomorphic to Z/2) o, A5 ^- w9 ?
    Defined on 1 generator: t" F# ^4 m% ~, R6 _3 E
    Relations:
    / i$ u( t7 `7 w( ]    2*$.1 = 0 to Binary quadratic forms of discriminant 28 given by a rule [no
    ) F2 D# \; Z) r, q( Qinverse]
    ( ^" A7 q2 p' u: ufalse
    ' m3 V: {  G# z7 ?1 ^7
    ' \4 |7 g/ P& W9 \6 e14
    $ n# {# Z# K, t, |% E$ Z28
    回复

    使用道具 举报

    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    本帖最后由 lilianjie 于 2012-1-10 11:23 编辑 ( O" u1 k2 O5 V# Y# y

    0 x6 E5 T: X0 f' v, C3 R6 H/ B' V3 l 11.JPG ' i8 F2 _! }1 C$ q

    : U  i' c, U/ `/ f# X3 y 3212.JPG 1 ]' J/ d! j' d

    6 ?5 Y, _7 p: t- u* \7 g4 d 123.JPG * z6 }) \, }; y

    / K" W- u5 u0 h: B/ F分圆域:
    9 d& j, f  _0 }8 uC:=CyclotomicField(5);C;
    2 d1 P! Q, [7 HCyclotomicPolynomial(5);
    9 L  s/ |1 k1 J7 d& ZC:=CyclotomicField(6);C;0 O4 U/ {/ c. b9 h8 T5 |5 q9 r0 P
    CyclotomicPolynomial(6);
    5 P- b$ v  W% cCC:=CyclotomicField(7);CC;- R% ^4 Q! k% q* y7 l  {/ B* w
    CyclotomicPolynomial(7);
    # [$ e5 T+ H9 i6 d+ y2 y4 B/ tMinimalField(CC!7) ;5 \& `: t) C/ k5 T+ s
    MinimalField(CC!8) ;
    ; I( F) T2 P& k  y- e$ b0 r* dMinimalField(CC!9) ;" [7 r3 W% d; A7 U7 S
    MinimalCyclotomicField(CC!7) ;
    / S' I& F1 e/ I" g. l& F. b# HRootOfUnity(11);RootOfUnity(111);! [5 L# [( v4 |
    Minimise(CC!123);$ c2 B& }: B  T" z0 N2 B$ q
    Conductor(CC) ;! I( p3 s+ W4 [& G4 z- `8 S
    CyclotomicOrder(CC) ;, J) v, A% x/ O5 X3 I
    + j# m9 U; ]4 {
    CyclotomicAutomorphismGroup(CC) ;2 C" M6 g/ l- [% V/ Y1 {0 R: O
    7 c$ E! h# W7 |  e
    Cyclotomic Field of order 5 and degree 4
    ( s' R" W& a9 F+ h8 t$.1^4 + $.1^3 + $.1^2 + $.1 + 1  _$ g* Z. V9 E
    Cyclotomic Field of order 6 and degree 2
    0 I' h  f6 s7 T$.1^2 - $.1 + 1
    8 d+ g) R$ C" V" a/ ?Cyclotomic Field of order 7 and degree 68 o# |+ l8 y8 N; I4 n# o8 y
    $.1^6 + $.1^5 + $.1^4 + $.1^3 + $.1^2 + $.1 + 1* w0 V5 j( a9 U) O! ^& W8 X
    Rational Field
      P1 f6 c! ~" _0 M1 E9 O( C: c+ s0 ]Rational Field
    % \- q0 M5 r8 S' ~: [2 v: pRational Field0 n2 O: V1 {; o/ f! `& ^
    Rational Field% p2 [) ~& r4 v& K1 Y, Y1 Q
    zeta_11
      u/ D7 J- C2 z( C: Izeta_1110 ?8 H4 M2 F- ^4 i# a8 T
    1233 u) p, g' H& b) x: e
    7
    3 b% E2 Z$ }, f" S5 ~/ z6 R4 C7
    1 q: Z' W. D& \5 y! ^, H3 |1 I8 y% ~* ?Permutation group acting on a set of cardinality 6
    5 W. L- I$ B/ r- y) e$ s# x' @Order = 6 = 2 * 3
    2 _) L2 b) A3 B6 i4 i9 w    (1, 2)(3, 5)(4, 6)
    1 I8 j) n! `; r% M    (1, 3, 6, 2, 5, 4)' u9 E$ P, I& X& h
    Mapping from: GrpPerm: $, Degree 6, Order 2 * 3 to Set of all automorphisms of
    ! y' @3 i' E  _CC& v- M$ U3 s9 h! l/ L+ M3 g
    Composition of Mapping from: GrpPerm: $, Degree 6, Order 2 * 3 to GrpPerm: $,   a: T. d% f  W+ R
    Degree 6, Order 2 * 3 and
    7 s: B/ i/ a0 `. t% n& yMapping from: GrpPerm: $, Degree 6, Order 2 * 3 to Set of all automorphisms of 7 _/ a3 z7 [1 j* z3 ], R( M
    CC
    回复

    使用道具 举报

    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    本帖最后由 lilianjie 于 2012-1-10 17:41 编辑 0 g6 G! z0 y( X7 }2 r
    lilianjie 发表于 2012-1-9 20:44 9 z3 N. z7 |) g5 z' H3 |; \& ^2 O' t# B3 y
    分圆域:1 C1 _( F0 d+ Q! x# @$ L. }8 Z
    C:=CyclotomicField(5);C;! u, x( _( }7 y  d/ Y/ O
    CyclotomicPolynomial(5);

    ( d' P5 b* P' i, z7 o7 B
    % |$ E' Y% P+ h1 Q2 y2 V分圆域:
    8 `0 R; \8 t$ C5 p+ {分圆域:1236 D1 Y# p* z& n0 Z+ {/ c

    1 g! S+ z& b$ zR.<x> = Q[]
    : J6 D+ [! l% d  A; H4 IF8 = factor(x^8 - 1)
      a0 b/ E) J4 ]0 r$ q" aF8
    . B3 ~5 D3 j4 y( S7 d8 y! C% |4 a# x: Q8 L5 n5 f6 A
    (x - 1) * (x + 1) * (x^2 + 1) * (x^4 + 1)(x - 1) * (x + 1) * (x^2 + 1) * (x^4 + 1) + l3 d1 V& u7 A9 l/ R

    5 \8 m% Y2 i6 |Q<x> := QuadraticField(8);Q;! E6 N! N- M0 m0 b5 j/ a, q! g; K
    C:=CyclotomicField(8);C;
    . K2 @" a: t5 J! Q0 t" lFF:=CyclotomicPolynomial(8);FF;
      n3 p' `, `7 O2 ]2 D
    # \; L, g) {8 ?6 H5 [F := QuadraticField(8);7 P1 d- \+ R0 }# f/ l$ L
    F;
    ; F( P; [0 l( j( k* \$ I" B: YD:=Factorization(FF) ;D;
    ! j* r' c! Q8 R( hQuadratic Field with defining polynomial $.1^2 - 2 over the Rational Field
    4 B7 m, q6 C, z* s, HCyclotomic Field of order 8 and degree 43 I3 L3 C  s* S; d$ M+ ^
    $.1^4 + 1
    # Z+ y( g: G9 s# v' \0 F8 [% JQuadratic Field with defining polynomial $.1^2 - 2 over the Rational Field3 [" d# s5 Y: @3 ?% A+ [
    [5 p7 b9 Y+ k/ a/ o8 o
        <$.1^4 + 1, 1>0 a0 M7 P1 P  _  F' a* s
    ]
    / J" Y; l9 O% _2 P  d. b
    ' d& l3 ~: d! M& sR.<x> = QQ[]& F" ~) B: o' ~) l+ I# e& p
    F6 = factor(x^6 - 1)5 b! L+ k3 ?- t8 z9 _4 }
    F6
    & l1 p( X- t% W3 E
    ' {. S! z) L/ j& O- g: j(x - 1) * (x + 1) * (x^2 - x + 1) * (x^2 + x + 1)(x - 1) * (x + 1) * (x^2 - x + 1) * (x^2 + x + 1)
    ! c4 u- u: Y( C' Y+ m1 ?5 ~$ z0 `" I1 F; u
    Q<x> := QuadraticField(6);Q;0 G, D1 S5 h$ s
    C:=CyclotomicField(6);C;' p& B) m* X# p4 V) G3 B# M
    FF:=CyclotomicPolynomial(6);FF;
    0 i' H, _: {' L5 M2 X
    7 f: q$ @( V; K- v' x# G" V) IF := QuadraticField(6);
    ) H* U6 m2 \9 D" a2 j0 U) n$ GF;
    * T* r6 T2 e  h3 E! q& O  m7 P/ JD:=Factorization(FF) ;D;
    % M# |- J8 `4 N/ s- p4 W0 sQuadratic Field with defining polynomial $.1^2 - 6 over the Rational Field
    ( X4 N9 U: H# U# mCyclotomic Field of order 6 and degree 27 h! V& [( N; ^% |' j* Q1 Q1 y
    $.1^2 - $.1 + 1) Y! \3 |3 P+ @) {
    Quadratic Field with defining polynomial $.1^2 - 6 over the Rational Field
    $ g  D+ R1 s5 \* x# z* }[7 p( ?. R( ^, R( b$ f
        <$.1^2 - $.1 + 1, 1>
    ' o& h9 k7 Y; d& p1 a% k/ C  R" r' f' z0 u]0 E$ n5 N& A2 |( s, n$ O

    5 `, J( ~- g  L( f" O3 xR.<x> = QQ[]
    . N7 i& r7 T' o3 z2 kF5 = factor(x^10 - 1)
    + O1 d1 `5 G  x# m7 ~+ [( c, ]F5# }8 t5 M9 W' F. \- _" V% m
    (x - 1) * (x + 1) * (x^4 - x^3 + x^2 - x + 1) * (x^4 + x^3 + x^2 + x +
    0 {& C' C3 q7 Y! f1 s# ^8 G! T& o1)(x - 1) * (x + 1) * (x^4 - x^3 + x^2 - x + 1) * (x^4 + x^3 + x^2 + x + 1)! U) {, n: D. N7 I/ W, V. A

    3 z- N# f7 }/ S; EQ<x> := QuadraticField(10);Q;
    $ T! Z) m5 N$ b& J& S7 [C:=CyclotomicField(10);C;
    " u1 _4 ~" [; ?" ]: UFF:=CyclotomicPolynomial(10);FF;  F% [: z0 g! A7 |# `4 U) Z/ ?/ v4 c

    & y  M, w8 s% ]: t) m4 y$ m1 nF := QuadraticField(10);$ M  y  m0 @* c
    F;# \' n. ~" @( e! J3 W. P6 Q
    D:=Factorization(FF) ;D;
    % m3 F* f+ t+ J$ {5 ^Quadratic Field with defining polynomial $.1^2 - 10 over the Rational Field' y' E& I- Z- S* l, o
    Cyclotomic Field of order 10 and degree 4
    0 [0 s* P% `7 a3 @% {; }$.1^4 - $.1^3 + $.1^2 - $.1 + 1
    % |* z4 B' ^  R* AQuadratic Field with defining polynomial $.1^2 - 10 over the Rational Field: w% X. r5 B, @9 o0 y; u. \
    [
    ; S0 S' _+ P: ^& g  {    <$.1^4 - $.1^3 + $.1^2 - $.1 + 1, 1>( ?4 C$ ~- F3 v/ `
    ]

    c.JPG (217.37 KB, 下载次数: 222)

    c.JPG

    aaaa.JPG (98.21 KB, 下载次数: 221)

    aaaa.JPG

    aaa.JPG (157.27 KB, 下载次数: 222)

    aaa.JPG

    aa.JPG (126.91 KB, 下载次数: 225)

    aa.JPG

    a.JPG (242.91 KB, 下载次数: 239)

    a.JPG

    回复

    使用道具 举报

    15

    主题

    4

    听众

    113

    积分

    升级  6.5%

  • TA的每日心情
    开心
    2012-1-13 11:49
  • 签到天数: 9 天

    [LV.3]偶尔看看II

    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-7-1 17:37 , Processed in 1.915788 second(s), 102 queries .

    回顶部