本帖最后由 lilianjie 于 2012-1-4 17:54 编辑 ; i* l4 o& s2 q; m2 l
' x6 o* X# T- I% z
Q5:=QuadraticField(-5) ; , t5 ~& _6 U8 D& HQ5; 5 h' z( H# W$ s: J1 O9 V 4 k& m x% |- F( ~3 p( o# g- {( mQ<w> :=PolynomialRing(Q5);Q;! M$ D: V7 S# A6 ], M
EquationOrder(Q5);1 L" a6 \8 v& X* j
M:=MaximalOrder(Q5) ; - Z! V" T9 E3 S, L: [M; 5 J; f8 {- c5 M5 ]& jNumberField(M); % {$ @/ f3 O, u, K0 e& ^S1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888; / t; P# }$ D1 J$ J" j1 t% @IsQuadratic(Q5);) T+ Y5 D1 g" _( [1 m7 J4 G
IsQuadratic(S1);8 H' M% X0 T7 k U
IsQuadratic(S4); ; z3 [: b/ q4 K$ O# @! p% wIsQuadratic(S25);" _6 x8 `" b' J; r! g4 q
IsQuadratic(S625888888);% A0 \; S1 H: e4 ?
Factorization(w^2+5); ; }$ K D0 D& c4 Y" u0 |0 }6 u9 SDiscriminant(Q5) ; ( I3 v" v: c" KFundamentalUnit(Q5) ; 3 @6 H1 Q! ^, ?5 a9 h4 I$ }8 h6 iFundamentalUnit(M);0 ~# L# \2 j' t" J% e- p
Conductor(Q5) ; ' E: v/ W$ m( s6 u( } + ^1 a0 B0 w9 X, Y! d wName(M, -5);& S1 ]1 V! k% h
Conductor(M);: { x# I3 ]6 [% F6 i$ q" [ u
ClassGroup(Q5) ; 4 q: X/ M: t+ u- v! \9 ^* G
ClassGroup(M); + y7 `1 S" G$ y% |( X8 Y& e9 |6 I) WClassNumber(Q5) ; 6 G' Q+ i4 g, r( LClassNumber(M) ; - T* j6 k7 u. \) f' u. ~PicardGroup(M) ;; O0 f+ i T C
PicardNumber(M) ; & l$ O9 i& t, t3 g+ S# m, |. R& w1 H2 d
QuadraticClassGroupTwoPart(Q5);( ^% y/ h ]: c0 @! ?5 [+ e8 z: I
QuadraticClassGroupTwoPart(M);# W# @. U) O$ \9 I6 d$ F" G
NormEquation(Q5, -5) ;: F+ w& B& z6 B# u O7 D
NormEquation(M, -5) ; : W( Q% d! ]* @1 p3 mQuadratic Field with defining polynomial $.1^2 + 5 over the Rational Field . ~9 e/ v0 I9 F/ Z. F& d( L" LUnivariate Polynomial Ring in w over Q5 ( e3 Y& o9 z" |# |; kEquation Order of conductor 1 in Q5 2 T! Z& V4 m" w, O- N$ J, p! fMaximal Equation Order of Q56 k% V0 w( ]" u& b
Quadratic Field with defining polynomial $.1^2 + 5 over the Rational Field 6 n+ j% h# Q, O* i a2 oOrder of conductor 625888888 in Q5 ' k3 w' [* L9 Y2 o" l; gtrue Quadratic Field with defining polynomial $.1^2 + 5 over the Rational Field $ Q) b1 `$ G6 N0 T4 ttrue Maximal Equation Order of Q5 & A3 p( |8 m1 c4 o6 s7 E) r) x6 ptrue Order of conductor 1 in Q5 . q( ]) f& S( T' E9 ^$ v( z6 K, ]3 `1 t9 F; Gtrue Order of conductor 1 in Q5! W. Z; A* L2 t/ N
true Order of conductor 1 in Q54 m( e5 ^& X. e9 g
[4 g# s# n0 q( @/ v: s3 ]# s$ r4 F
<w - Q5.1, 1>, 9 }- `& z8 E. Y <w + Q5.1, 1>5 }# m- B+ P' @* }- W; q. E P
]7 Q8 t, [% s) d, R" I7 O
-20 & w, q" u% [( z0 y7 a# `; l6 p' |) v2 c# F5 o5 r7 G: _( H
>> FundamentalUnit(Q5) ; # A7 ?. E$ ~$ ?; e, _/ K; X0 F: p ^ ! M. P* I( a5 t( t8 y2 s% bRuntime error in 'FundamentalUnit': Field must have positive discriminant! z% ^ l3 Q, C3 ~7 ^
3 R9 w% I1 d9 R- L
7 k' P8 _8 E0 Q' `& t7 |" z* ?4 T; @>> FundamentalUnit(M); K6 j2 M# M, I5 {+ N5 @ ^9 Y" v# I" W' y: T4 b% F
Runtime error in 'FundamentalUnit': Field must have positive discriminant 5 d$ M5 R9 O4 Z; Z) q" r$ _4 [" [& h; @5 f2 J
20 , c/ \3 q' Z2 l. Y5 O5 ?3 t( t6 T/ K" F9 O2 f0 E- {
>> Name(M, -5); + X! e x1 w1 Q7 j2 J, F5 h3 ` ^. s n2 U! r% X9 u
Runtime error in 'Name': Argument 2 (-5) should be in the range [1 .. 1]+ [ T9 s; H2 M. C7 i5 K. F
~2 L6 n, |3 c0 G4 @* [# H1 ) ~1 Q {( {% d- GAbelian Group isomorphic to Z/2& P% w7 h; P0 x# `0 P1 D" ^
Defined on 1 generator / }7 l- d3 ~. s1 C+ x' i- v/ KRelations: 7 ^ u6 l1 L" u8 ] 2*$.1 = 0 ( `; S9 w; r" S' @8 s% g# VMapping from: Abelian Group isomorphic to Z/2 * Z: I" h. b5 H* ^( P4 |* E& TDefined on 1 generator( x, @! t! P. `7 h6 C. L+ g
Relations:! |* r0 Q4 x+ _4 E% m
2*$.1 = 0 to Set of ideals of M: Q# | ^9 p% n/ o8 Z# F2 ~
Abelian Group isomorphic to Z/2 # y' A7 P; q6 x" tDefined on 1 generator3 A1 x+ J8 I/ v6 M
Relations: : ?# |) [) K7 @. W' o$ \, I 2*$.1 = 0 6 k: R V5 Q9 B( x3 Y$ u% ~Mapping from: Abelian Group isomorphic to Z/2 ! G+ J1 M c& n& W) Z% G6 HDefined on 1 generator 3 N) G$ Z% q% IRelations: 1 C7 v+ e" j @2 x* c3 H+ S" _ 2*$.1 = 0 to Set of ideals of M. D; D; C! c3 [7 ?& |9 V
2 / ^. |/ J% A; r5 {3 m2 : ~0 P. l) G( Q, R, e$ O( _Abelian Group isomorphic to Z/20 K1 P2 V6 W: |) G/ A2 {# j- z
Defined on 1 generator ' I( p% r8 Z( O- q6 B' sRelations: : @1 W0 H9 ]+ Z 2*$.1 = 0 . t8 {+ d/ J& z3 I: `" O+ ]Mapping from: Abelian Group isomorphic to Z/2 ! d$ P; M5 k% k. |- b$ zDefined on 1 generator; d2 g% |8 e, M8 `/ ?
Relations:: ?7 q+ N1 ]! ^# T0 Z& K
2*$.1 = 0 to Set of ideals of M given by a rule [no inverse]) k0 S, Q J& v$ j+ f: Z: z
2 / |+ c1 q$ p' n( Y1 {Abelian Group isomorphic to Z/2 $ n# s0 o; g8 Y( z5 x) GDefined on 1 generator; |- P' w" L9 t/ `- S8 a# H- L8 q
Relations:' s6 A& H+ R C$ r0 [
2*$.1 = 0" I# u, o5 t1 A2 N3 K' \
Mapping from: Abelian Group isomorphic to Z/2 8 a& H: J" w% w4 B. I, R( _3 zDefined on 1 generator$ W3 S7 F$ t/ J4 I, S* \
Relations: . R* b& d/ x: L. {# t) Y( K 2*$.1 = 0 to Binary quadratic forms of discriminant -20 given by a rule [no - Q9 R @# T& R/ R: b: |inverse] & x( I5 V! ~* i A# F; X; r% Q QAbelian Group isomorphic to Z/24 B& K# f3 K8 z9 J* m
Defined on 1 generator: G2 Z5 l" E6 E4 F; s
Relations:9 E8 t: n6 A G
2*$.1 = 0 ) u4 q" P! w: A p SMapping from: Abelian Group isomorphic to Z/2& Z4 d% _) m* O: |( s
Defined on 1 generator) l2 ~. `( h# X e" z. `$ V- l
Relations:& V6 \+ n1 q2 q* E
2*$.1 = 0 to Binary quadratic forms of discriminant -20 given by a rule [no + Q5 _# U; i3 [. j$ p9 Rinverse] 4 Y, n& V/ [9 b1 Pfalse 8 w& o3 V- D! V4 Wfalse+ X5 h8 {/ S7 J; C7 v/ i
============== : c5 B7 I4 X8 ?2 I$ Q1 \9 J1 @6 i* E5 T u( t% x) ~9 K
- X6 D; @; e3 J* q
Q5:=QuadraticField(-50) ; ) J3 k2 H# Z5 GQ5; $ T- g! Y8 _: Q' h5 E * t$ f% [$ \+ w% Z. ?" g9 eQ<w> :=PolynomialRing(Q5);Q; % j- n0 V* a/ OEquationOrder(Q5); & K+ }- I- ~3 e0 lM:=MaximalOrder(Q5) ;1 t( ? p* \( {5 v9 J( P! p0 A: e5 {
M; 4 T9 p* r3 A$ M1 e# HNumberField(M); / a' b6 E3 N7 C" |- X mS1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;, w5 {1 U# ^/ O- Z- I( T) n
IsQuadratic(Q5); $ q$ R9 `6 U3 o9 }3 TIsQuadratic(S1);0 d* U6 \# o1 F' i/ S
IsQuadratic(S4); ; `) m8 D0 z& V N' V& C1 ~7 yIsQuadratic(S25); / M" z% y4 f! C* h- {- XIsQuadratic(S625888888); - y% d: G3 B5 I2 JFactorization(w^2+50); ( D. V, S. `* i
Discriminant(Q5) ; % V* U" P+ E9 {' c; I p+ mFundamentalUnit(Q5) ; ' @ S7 i: K1 b$ a# yFundamentalUnit(M); % V! B, ` ^' V, v1 {0 ?; P; J: C& QConductor(Q5) ;* e, a9 i$ U5 {9 j9 X
. H9 D4 R3 M) \- V# w# \- ZName(M, -50); 6 h8 @1 _( u* |2 }* E" R! AConductor(M);! w' G* a4 {) T K9 v
ClassGroup(Q5) ; ) g. [0 u6 J! p7 t2 K- ~ClassGroup(M); + r+ Q& y$ Z3 F- g, u4 l/ Q; YClassNumber(Q5) ;# k) h6 ?4 m: q& H
ClassNumber(M) ;9 F9 o( D7 Z* S
PicardGroup(M) ; - E, u/ G& X) p7 sPicardNumber(M) ;/ q: x x) \) R7 R
' |" D: g# |3 N" Z3 `
QuadraticClassGroupTwoPart(Q5);" \! Y% r' t6 o9 F( u8 t: u. h5 _
QuadraticClassGroupTwoPart(M); ! N3 J- C; G2 a* lNormEquation(Q5, -50) ; $ \2 r% ^# G& X3 i5 g' P* {1 Q( TNormEquation(M, -50) ; ) `) M" @/ ~: n) U) w! o" S J/ p- J5 q4 {! KQuadratic Field with defining polynomial $.1^2 + 2 over the Rational Field( K, O! L! z, ]1 h: ?
Univariate Polynomial Ring in w over Q5, E) ]: z+ r) z$ \
Equation Order of conductor 1 in Q53 x7 j* P2 ^; F) t q9 f
Maximal Equation Order of Q5" E l5 Y7 o0 F
Quadratic Field with defining polynomial $.1^2 + 2 over the Rational Field$ L8 {* |. U! N
Order of conductor 625888888 in Q5 6 x- |# F/ @; r! o( C# ?/ [% t7 Strue Quadratic Field with defining polynomial $.1^2 + 2 over the Rational Field 1 O- f7 q' T$ k! i3 f1 ^true Maximal Equation Order of Q5; V" u N0 M0 K
true Order of conductor 1 in Q5 2 b0 v$ ]9 R1 W/ E" O* \true Order of conductor 1 in Q5 8 U. g4 K8 O2 \1 Rtrue Order of conductor 1 in Q53 P% ^- a5 f6 l
[: V% O$ o: _) v3 E. j) D
<w - 5*Q5.1, 1>, ! W/ K) O& T# R6 Y! l" p <w + 5*Q5.1, 1> + i# Y& _! S, ]) H- r" B]2 Y+ ?1 U) E0 A1 T
-8 ) Z2 d, t1 K2 e, d- g3 l/ X0 C$ W, z2 U/ u% ]
>> FundamentalUnit(Q5) ; : O" i) v3 h4 a; L ^3 ~& C2 Q1 }& }3 H D
Runtime error in 'FundamentalUnit': Field must have positive discriminant" Z. m# P s! G
' a& l# x4 y* |0 l( [' Z* p9 A ' c9 Z2 a: O# ]2 T9 y>> FundamentalUnit(M); $ _( m) g* K' x; ^; ], [ ^9 O. e! ?# @5 G7 ^1 @9 n1 |( l) w
Runtime error in 'FundamentalUnit': Field must have positive discriminant 1 M( h7 }& \3 N& w4 X7 _% c; s/ t( }- k) P& `$ F
88 B2 D4 {4 e# i1 x
; R5 @% x8 \ P* m
>> Name(M, -50);5 G8 e. q5 L8 L8 B$ e8 p7 o
^+ X& y4 T) N7 x# W1 v
Runtime error in 'Name': Argument 2 (-50) should be in the range [1 .. 1]$ r$ e5 C, v5 a9 Z$ `; {3 q% i
" C. u" m+ P; _4 }1% k q' I! Q- Y5 ^- P4 o( X! p
Abelian Group of order 1 # Z# B- f- s2 p( J9 o* P5 eMapping from: Abelian Group of order 1 to Set of ideals of M ; r* D! T4 B9 f" e/ CAbelian Group of order 10 f7 H0 @ O3 ~: a2 e' |( s
Mapping from: Abelian Group of order 1 to Set of ideals of M ! _: o% s# E6 N! x4 O! R11 u1 i. B2 i1 k8 z3 Q% N
1 ! y' E' a# z4 p WAbelian Group of order 1 % i7 A5 i2 w6 qMapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no2 x- x0 s. u9 f+ I# z
inverse] 6 P: ?! ~4 @: D8 L) D1 * m/ j( S: X5 }, uAbelian Group of order 1 : f# w% \; ]. j- O4 ~* h% dMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant ( P6 \$ M1 A$ j% `' ?-8 given by a rule [no inverse]2 b+ i }6 J+ ]$ S+ E
Abelian Group of order 1# @4 a) y) G' }2 l, c
Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant- c, W. M/ D- b0 l6 a. r# e3 V
-8 given by a rule [no inverse] + d; A' n$ o4 {. [ ~2 Gfalse9 C5 k. N; U, I4 c3 {4 U) `
false; C1 |; l- d6 G- Y: i1 W
+ @3 c Q% ?7 H; p3 oQuadratic Field with defining polynomial $.1^2 + 1 over the Rational Field 2 u/ L2 g4 v0 S- U3 ~4 L0 H2 UUnivariate Polynomial Ring in w over Q5 " w% _: i) P9 [) e8 N5 QEquation Order of conductor 1 in Q5 / ^# ], Q5 J2 C6 QMaximal Equation Order of Q5 ) b) ?6 R* A0 M; C7 X* e& dQuadratic Field with defining polynomial $.1^2 + 1 over the Rational Field7 `- ]7 Q+ Y' q/ t: u! w
Order of conductor 625888888 in Q56 }. h! {6 A" z o4 E. h
true Quadratic Field with defining polynomial $.1^2 + 1 over the Rational Field + n" }# N" V2 s8 X; L- k1 W0 ytrue Maximal Equation Order of Q5 3 |" D$ q( {- E, u& `true Order of conductor 1 in Q5 P3 Q) ]4 N1 h/ k0 Gtrue Order of conductor 1 in Q5" G- \! K7 ]6 u& p9 G/ j7 N5 G
true Order of conductor 1 in Q5) s# d& T) j7 e; e" \( _
[5 v; `2 B2 L; M. _- q0 x3 `$ W: y
<w - Q5.1, 1>, : L- n' B% A ?: Z <w + Q5.1, 1> / N3 S8 T1 Z3 F1 w] ; V8 O9 D2 i: X-4 6 j+ V: |/ D2 f- L; V' \; C B# g- L3 ^9 X1 \# v; _& c>> FundamentalUnit(Q5) ; 3 `, k( n+ n/ \; K5 G' |# ^5 m ^+ X& [# ]6 [# M. e8 G; H6 }
Runtime error in 'FundamentalUnit': Field must have positive discriminant }7 p3 b, q) G; v) ?: Z/ ]0 K6 v
, ]. n; d! T/ y
>> FundamentalUnit(M); + G! l4 J: U& b5 ` ^ + r6 l9 @/ l2 _3 ?' Y! e$ }Runtime error in 'FundamentalUnit': Field must have positive discriminant ) z0 l& I, y" E4 i D6 j( S/ N) l
4 7 E3 _+ H2 P8 m ! K, i$ {+ i# e>> Name(M, -1); : {/ i- K* U8 o/ [ ^ 9 N9 W& `6 t; w/ k0 s; Q) HRuntime error in 'Name': Argument 2 (-1) should be in the range [1 .. 1]% p9 i5 B3 u# u2 A) P. J
; a8 h& Z0 e+ l1 _1( S7 R3 {9 t8 B" A
Abelian Group of order 1 6 c8 N2 u" g! t4 OMapping from: Abelian Group of order 1 to Set of ideals of M% p$ d: E5 y b& Y8 W# b: i
Abelian Group of order 1 0 ^/ y$ j! w' t2 w |0 t' CMapping from: Abelian Group of order 1 to Set of ideals of M B: l% _( t$ K3 J P1 * a' t7 j! J# J) E, X0 J1, V5 c" a" ], |& h, o' f1 H! ~9 C
Abelian Group of order 16 W. i9 B% {8 H, Z- h4 W' x
Mapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no. e( k( v" j l; K0 P H1 K
inverse]/ U: M8 H# y; k- U4 {1 @& \% A. s
1! D9 m# j. c# t, ]
Abelian Group of order 1 1 k! g. I/ z; DMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant 1 A2 {$ H8 l, m2 e3 v) |7 \& P-4 given by a rule [no inverse]; m4 Z+ i1 |" m8 _
Abelian Group of order 1; f0 D3 t7 j5 R2 m$ e! ^( i3 S/ i
Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant ( G( b" t" V) d8 a# Z$ G/ C \-4 given by a rule [no inverse]" z* i+ p4 M, |, t
false2 J$ }- Z2 ^& x& Z2 M/ z
false- G4 m; r9 i( F; d5 Y
=============== # l3 Z- k/ Y2 {; A u: Y9 e" S4 k, L6 z1 M( m9 O
Q5:=QuadraticField(-3) ;0 ^& b! }( s, g3 `$ W7 {
Q5; ( }" Q% g% q# C3 z1 k " N" G' P! i% g. ZQ<w> :=PolynomialRing(Q5);Q; 7 @* v' \7 o; w) D. n$ x+ N/ zEquationOrder(Q5);5 J' o2 b5 n! \
M:=MaximalOrder(Q5) ;5 T( y }$ d* q7 c) I( N9 e7 P# \) U
M; 9 ]# t& E1 `; t6 T8 j. |NumberField(M); / F$ |8 S1 _9 B O# K s$ I" uS1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;, h. t2 o" _5 ? Z( K7 P& s, G3 f
IsQuadratic(Q5);$ C2 e8 W: a6 [" y) p
IsQuadratic(S1);' m- ~! W9 o8 s$ C( v4 ~/ o; ~
IsQuadratic(S4); % n* t3 v1 Q1 \. [: k5 G4 r0 XIsQuadratic(S25);4 S1 h/ K9 m$ [* Y
IsQuadratic(S625888888); : {# z2 h9 W: ^8 X+ b9 G8 g9 bFactorization(w^2+3); 8 b, \4 U5 D# UDiscriminant(Q5) ; 4 }7 S' w! A6 pFundamentalUnit(Q5) ; 7 K0 m3 G' B! Q/ B4 VFundamentalUnit(M); - v+ q9 I% F Z- m, ~# SConductor(Q5) ;' _1 J8 a9 H" R
3 E+ y* B7 h1 g+ u9 p
Name(M, -3); 2 V6 [9 r* H7 u* k5 b- R7 D: mConductor(M);0 G. ~3 S9 s) \8 x v7 c
ClassGroup(Q5) ; 7 w* z9 _) @. |7 MClassGroup(M); ( E* w4 ?% B& o) T) E% m1 U* gClassNumber(Q5) ; * R1 N6 Y8 t( U" E" `; @ClassNumber(M) ;$ B/ x( }4 q+ s1 A5 {3 M
PicardGroup(M) ;. V3 n. _1 C4 ?
PicardNumber(M) ; ~7 }: x% V3 w0 I b. @& r, W; b/ ^* n4 i( R
QuadraticClassGroupTwoPart(Q5);8 z# r# h9 u- j- X& j
QuadraticClassGroupTwoPart(M); " ~4 M+ H; N+ B5 ?' {NormEquation(Q5, -3) ;9 l0 R) `# ]6 j& w: d+ C$ e4 O
NormEquation(M, -3) ; : a; F: d$ E3 z8 L- |0 T) D) v% m/ e' I2 F' {- \
Quadratic Field with defining polynomial $.1^2 + 3 over the Rational Field 3 }0 k: H9 ~. [# WUnivariate Polynomial Ring in w over Q5. o* |8 [8 M+ I2 V$ ^: C
Equation Order of conductor 2 in Q5 & h T% {# r' o/ M+ x& wMaximal Order of Q5 4 m/ _7 ?5 K" r" {9 m5 B* T) q1 qQuadratic Field with defining polynomial $.1^2 + 3 over the Rational Field 4 l" j e/ E2 _# H5 f3 ?3 H4 c# NOrder of conductor 625888888 in Q5% l B: h6 B4 v& w6 v
true Quadratic Field with defining polynomial $.1^2 + 3 over the Rational Field+ v6 F2 q' \4 ]# @. h& C
true Maximal Order of Q5/ A2 f3 W* L* l1 |! a/ E* a
true Order of conductor 16 in Q5 0 _& Q v' s( M5 L8 Y" f/ \' Vtrue Order of conductor 625 in Q5 / W' E$ m0 T( |true Order of conductor 391736900121876544 in Q54 U0 ^: [- F8 y7 @
[- z' {1 N4 h% V# f! G( ?
<w - Q5.1, 1>, ; B5 Q1 B$ j7 K+ S8 ?! @ <w + Q5.1, 1>: I# ?( J- |( Y! I
]- G; w, C4 ~1 M( h5 R5 p+ `9 @& R
-3 , @( N* r) e9 R4 ^, m) x. R ) y% j( z0 ~: G' D) i) i>> FundamentalUnit(Q5) ; . h/ S& Y2 H- p8 [ ^ 6 v" J# E8 ?9 k( LRuntime error in 'FundamentalUnit': Field must have positive discriminant % ~/ J' w7 x# ?8 b6 C+ N4 j1 I3 s' G$ _6 J5 d, b
0 R) {0 G6 m* o8 g>> FundamentalUnit(M); - t1 I/ J" r8 B! z- } ^ + n! q5 j( G8 [' VRuntime error in 'FundamentalUnit': Field must have positive discriminant 7 v$ O N: s- p % s( K- J, b( D- |3 n3. w m0 i7 v8 K" ?* _1 b; i; w
; v: x/ ^% X5 K- K' b9 X; {>> Name(M, -3); " p3 z( N2 o, R0 ^, D/ r ^ * e* e7 P/ v6 Z2 g; C; c. ^# PRuntime error in 'Name': Argument 2 (-3) should be in the range [1 .. 1] 8 j7 P9 B! B& t; l `1 F 7 I# h2 i1 } S( x. g1 $ v/ w/ `' J$ {Abelian Group of order 1 ; F( _- g3 a! H/ X' _8 n) QMapping from: Abelian Group of order 1 to Set of ideals of M* a9 w C0 b3 r: y& u: y
Abelian Group of order 1 ; j" L) x4 c( I2 _, [Mapping from: Abelian Group of order 1 to Set of ideals of M ' q; q) m2 e1 L1 ) d& i3 z1 D f, a p6 Q: f1 6 n5 P/ X7 [& `: BAbelian Group of order 1+ ^3 o, T! h/ \% n7 H* M& b
Mapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no : H+ Q! G8 z/ R& }, }inverse]5 B( [, P* p* z/ g+ T9 O6 k
1 7 B! v" e1 J4 r. QAbelian Group of order 1 # ?2 m) [) @* v4 ]+ hMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant2 U7 u, V8 ~' z/ c: \: h% a
-3 given by a rule [no inverse]" e/ F" a* K" P0 O
Abelian Group of order 1 + y% c, t# ?0 A4 T4 q8 EMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant5 A( B& [1 Z5 U* s: b# J+ q
-3 given by a rule [no inverse] / \* e, l' i# J0 sfalse 6 Y2 m6 A9 }8 s ?0 K( hfalse
lilianjie 发表于 2012-1-9 20:44 9 z3 N. z7 |) g5 z' H3 |; \& ^2 O' t# B3 y
分圆域:1 C1 _( F0 d+ Q! x# @$ L. }8 Z
C:=CyclotomicField(5);C;! u, x( _( }7 y d/ Y/ O
CyclotomicPolynomial(5);
( d' P5 b* P' i, z7 o7 B % |$ E' Y% P+ h1 Q2 y2 V分圆域: 8 `0 R; \8 t$ C5 p+ {分圆域:1236 D1 Y# p* z& n0 Z+ {/ c