QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 2212|回复: 9
打印 上一主题 下一主题

虚二次域例两(-5/50)

[复制链接]
字体大小: 正常 放大
lilianjie        

43

主题

4

听众

204

积分

升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    跳转到指定楼层
    1#
    发表于 2012-1-4 17:41 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    本帖最后由 lilianjie 于 2012-1-4 17:54 编辑
    8 O9 `2 w8 Z; K, c' M$ X
    % }9 z& u6 [6 r0 O5 A3 M& E/ J7 MQ5:=QuadraticField(-5) ;" v+ c8 b. k1 p1 T
    Q5;; z, X* A% t* [# _  T# h4 h6 S
    ( h$ p2 b) M* r! I
    Q<w> :=PolynomialRing(Q5);Q;
    , A% D& i; F( y# }EquationOrder(Q5);
    8 B( j2 o2 d9 t* G2 VM:=MaximalOrder(Q5) ;! M! E) p! B( F* O
    M;. C5 s& Y0 q4 i2 h7 ?' d
    NumberField(M);
    5 [+ p6 |5 s3 X+ ^; h2 Q  G6 O+ mS1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;- T7 i7 y- ^  F
    IsQuadratic(Q5);, b# a2 {; F2 @9 E# P7 D' I1 B
    IsQuadratic(S1);2 D+ U. E6 c) Q) w8 H7 p/ ^( r6 F$ B
    IsQuadratic(S4);
    , s2 J, P( h: ~IsQuadratic(S25);2 L1 Y! h/ Q( z6 E, o! L4 G
    IsQuadratic(S625888888);' U: U( x$ `6 i# J; U6 ?7 V3 I0 \5 W
    Factorization(w^2+5);  
    ) Z7 W! B7 j4 o' W/ J! j# \Discriminant(Q5) ;
    ; D4 o  Y& c; L$ g& D& ]FundamentalUnit(Q5) ;
    / z. T* Y. J! @6 i; n/ ~FundamentalUnit(M);
    ' d: W; y2 \7 L! j) j: FConductor(Q5) ;* }( a% W3 e" T8 x

    * _6 W8 i+ g* U5 P7 X, a$ TName(M, -5);
    % w2 \; n# m6 K& H) D* RConductor(M);
      N; M+ M% i$ aClassGroup(Q5) ; ' n4 q$ W2 R% k5 Z) f5 [! t% C$ r
    ClassGroup(M);
    ; J) `9 S- t# c  r; mClassNumber(Q5) ;
    8 @+ i# J# p$ J. L/ O* [ClassNumber(M) ;6 [4 ?8 u$ n2 I6 r# L3 G
    PicardGroup(M) ;# \1 [9 p! X( x6 Q* }
    PicardNumber(M) ;0 m. E. i( ]/ T+ W9 [: j* J9 Y/ t
    1 I. G! f- O1 E  V
    QuadraticClassGroupTwoPart(Q5);
    2 J) E4 Z8 c% Q' A2 F0 o# z9 \0 kQuadraticClassGroupTwoPart(M);
    ; K& \* @$ j: j4 g# d" }0 pNormEquation(Q5, -5) ;
    2 M, O& h0 T" N& g) g% ^. {NormEquation(M, -5) ;
    $ Z+ d; m$ {3 @+ DQuadratic Field with defining polynomial $.1^2 + 5 over the Rational Field
    # c5 r: s$ X9 Q( Q: g  vUnivariate Polynomial Ring in w over Q5
    6 e7 \5 h! P3 V- LEquation Order of conductor 1 in Q5
    7 x) r( p0 |6 S& fMaximal Equation Order of Q5* t" L% n9 W+ Q
    Quadratic Field with defining polynomial $.1^2 + 5 over the Rational Field9 i2 p- I! K( p. x. O) V/ A' F
    Order of conductor 625888888 in Q5; R& i1 f+ `# `6 I+ }7 A
    true Quadratic Field with defining polynomial $.1^2 + 5 over the Rational Field$ D7 o4 B4 \! W% c
    true Maximal Equation Order of Q5
    ) t/ o" n; h6 c! c' U& {! V( D7 itrue Order of conductor 1 in Q5' r% N6 u- u8 i, r" X
    true Order of conductor 1 in Q5- V8 L3 A8 Y8 x7 M, K7 y; Q+ g/ X
    true Order of conductor 1 in Q50 [; Z: L  ]& c2 a% [7 m3 ], K
    [
    + ?$ ]1 Q3 e) e' e, N% @2 T. q    <w - Q5.1, 1>,
    % a1 \7 T/ \, \% e! b" a1 X    <w + Q5.1, 1>
    0 q6 v4 _! Z" U. L1 s& L& q9 g- ^]
    $ w" Q6 ^' t0 L5 o# {-20; Q! J' F9 P% v: X
    5 W8 L( S( U0 v; M' q8 i$ S. d' l0 p
    >> FundamentalUnit(Q5) ;9 {6 W+ q/ ~* L& O( i" F
                      ^
    & j( x+ {4 r- O. [( xRuntime error in 'FundamentalUnit': Field must have positive discriminant6 \& l; Q0 a8 d( C4 n2 c+ u7 m
    . H$ g) w& ^1 p: v
    7 g+ ~/ h0 E0 n) E
    >> FundamentalUnit(M);2 T1 F4 w9 @! \: Q
                      ^3 w) z' H  r: g* t) c1 A, d
    Runtime error in 'FundamentalUnit': Field must have positive discriminant
    ; y. a9 i7 S' @5 y) J( y
    5 \- {' C( j; I2 c) U' C$ r$ X( x0 [20
    / F! S8 J0 h: C& r# Z+ _+ F2 K" e4 M0 w( ^% c& W9 U) [+ N" x
    >> Name(M, -5);
    ; ]# I$ t' E/ V6 J7 N       ^7 Q, q- P! I- c& q5 j
    Runtime error in 'Name': Argument 2 (-5) should be in the range [1 .. 1]- o" ?5 u3 i: V+ r0 |: C
    4 v/ u/ v. X! |2 {
    1
    , `% M/ Y. T9 BAbelian Group isomorphic to Z/2
    8 S' v, \+ O! i- ?Defined on 1 generator( T$ N) w: k5 H/ G) o
    Relations:
    + V; H) V2 l# Y6 e* L& C    2*$.1 = 0
    / z) p9 {* r) s2 l: q; D4 zMapping from: Abelian Group isomorphic to Z/25 c5 X5 M3 ?8 i6 X
    Defined on 1 generator
    4 p6 n# \1 B, |9 N# M; URelations:& J) r- g0 f. m2 r8 j: [
        2*$.1 = 0 to Set of ideals of M( H/ F0 E* [' E
    Abelian Group isomorphic to Z/2
    0 ^. _# X) n! }8 q* l' w% u: XDefined on 1 generator
    4 v, |+ R5 ^5 ^& a  u( R5 i3 a! hRelations:
    ' j( C+ @9 B% Y3 [) L# W    2*$.1 = 0
    0 l; H. F+ e) m) c  O' X9 UMapping from: Abelian Group isomorphic to Z/2
    1 F' J/ H: m1 S' F* tDefined on 1 generator4 z4 b) ]% K/ v4 s. w
    Relations:
    6 v- P6 T6 R: H( I' ~    2*$.1 = 0 to Set of ideals of M% u+ t2 E4 h. P1 ^0 d
    2# V3 y( g6 G3 M: g1 ?2 ?
    2: P- u% @9 z1 i4 D. e
    Abelian Group isomorphic to Z/27 z6 G7 Q% _7 r  K6 _& ]
    Defined on 1 generator
    8 G1 ]$ a$ F& x. v! d% h# VRelations:; k! T$ s/ X- b0 o1 p0 k  t+ e
        2*$.1 = 0  V: @1 H! M0 r# Y% v1 `. O
    Mapping from: Abelian Group isomorphic to Z/2
    6 T+ H2 E! ]0 r5 uDefined on 1 generator
    , N, L% Y5 {  N! W( q% i2 aRelations:
    ; ^- _4 ?: }( s4 s4 i& [    2*$.1 = 0 to Set of ideals of M given by a rule [no inverse]
      {6 x4 |& P1 K% _4 o' b: l- W; }2
    . B0 L, H2 t- |Abelian Group isomorphic to Z/2
    2 t' H7 ^# u% e' f1 s. Q( DDefined on 1 generator: R3 {- Q) ^: Q* ^$ Y
    Relations:
    0 O- _2 Y$ I0 d* S( H4 _) j' V    2*$.1 = 0/ ?6 \; m' b' ?
    Mapping from: Abelian Group isomorphic to Z/2
    - i( n; r, L: F) v8 TDefined on 1 generator7 e1 F4 `4 y# ?; v
    Relations:2 Z+ d- c; h0 r2 ?! J' }, J. H
        2*$.1 = 0 to Binary quadratic forms of discriminant -20 given by a rule [no 1 ^$ v1 m' o+ g8 [6 j
    inverse], f+ A( R6 R, e  c( t3 r5 d
    Abelian Group isomorphic to Z/2
    ' C% J8 g, y8 P7 x* w! yDefined on 1 generator( t6 [6 e: B$ e3 {. h- w3 F5 ]
    Relations:
    7 ^  t0 M" \' c; @/ W- P    2*$.1 = 0
    3 m! o' h* ]# o0 Y- RMapping from: Abelian Group isomorphic to Z/2
    , \0 X  p2 M8 M# Z5 ~Defined on 1 generator
    8 U& T, J1 ^; t% H. f3 ^. O4 h2 ~0 {Relations:* Q6 Z- V( U+ k( _6 g
        2*$.1 = 0 to Binary quadratic forms of discriminant -20 given by a rule [no 8 ?* ^5 O( w$ \. g$ ?5 \
    inverse]
    # U! y: q/ t" ]; a1 {/ rfalse/ H! J( l/ y0 o
    false+ G) t* j) o1 M0 }, I4 Q9 r
    ==============
    & u; p3 K" D' w+ V! c+ o5 Z
    ( N3 I8 q: F% ?( k( l6 K6 H$ p$ s
    & [3 ^" n  Y- C8 E7 i! mQ5:=QuadraticField(-50) ;/ p& r7 ^, V) V) q+ S
    Q5;: N3 o0 g/ j. W$ ]! O
    " i7 Z% L6 l  n5 M$ C
    Q<w> :=PolynomialRing(Q5);Q;
    , X" b. R! D, ^; XEquationOrder(Q5);4 ~' L# w5 J5 J+ u( j
    M:=MaximalOrder(Q5) ;
    $ `7 P( D8 _7 e: g* i! nM;
    % Q+ x! @" O2 k% N" ?' w( ENumberField(M);) ]' T: Z) m, a& Z- z- J. y
    S1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;( J; [+ {! G$ b$ o" i5 a, q
    IsQuadratic(Q5);
    2 O8 [; \- ~( m4 F0 @IsQuadratic(S1);8 @1 S+ a7 N1 o; }7 t  r  y4 T! U
    IsQuadratic(S4);
    ' N) x! h1 y! T+ X$ O- b) ^. W: A& qIsQuadratic(S25);
    0 g/ S  d- s) D6 K+ T+ VIsQuadratic(S625888888);
    7 m7 l  V5 ~! Y: I( u; L9 r- qFactorization(w^2+50);  # o1 N2 A+ c+ ]
    Discriminant(Q5) ;5 l0 i& a3 R8 K+ U
    FundamentalUnit(Q5) ;
    3 B" @' O4 [  G# v" fFundamentalUnit(M);* M" d7 W. M7 T
    Conductor(Q5) ;) d! |+ f0 U6 [5 S2 \  `& p  f

    : |8 O( K4 \# w( j0 e/ ^7 RName(M, -50);& C) r" I8 l+ u6 g- s- \
    Conductor(M);. V( |, N7 y# X; V- E1 ?
    ClassGroup(Q5) ;
    0 M5 e4 D9 Z, z& L9 w; HClassGroup(M);6 f3 O& P! N  [) {3 ]
    ClassNumber(Q5) ;( @9 j1 P6 }/ H: y, V, e
    ClassNumber(M) ;: g6 Z* y, V9 P# I- Z' y1 P8 Y$ P, L
    PicardGroup(M) ;0 M# ?& d9 ^! `% z. u4 ~) e
    PicardNumber(M) ;
    + J; K. N% Z  S! W! O' V
    ) G9 u- v( D, Z2 ~# d, UQuadraticClassGroupTwoPart(Q5);
    ! V* m+ ]1 x# FQuadraticClassGroupTwoPart(M);  ?( r1 e0 Z. J9 r, z' d5 A9 U
    NormEquation(Q5, -50) ;' O" L4 l# f9 k) l! v& Q  v- v; g
    NormEquation(M, -50) ;9 L6 p: ^& w: r  x3 z. n
    2 B* ]" x$ l- A! w: ~1 ~- O! @" v! G
    Quadratic Field with defining polynomial $.1^2 + 2 over the Rational Field/ C" G8 u; m  _' M2 T! u( L
    Univariate Polynomial Ring in w over Q5
    0 @" h" G5 b# P  sEquation Order of conductor 1 in Q5
    5 b  P* j- M& n1 W( Z" ]Maximal Equation Order of Q57 V: N' V( j) s7 o7 ]1 G
    Quadratic Field with defining polynomial $.1^2 + 2 over the Rational Field
    6 B5 L+ k: B8 w; V6 J$ l- ^8 M' NOrder of conductor 625888888 in Q5
    7 C3 `! m3 i* C/ O8 mtrue Quadratic Field with defining polynomial $.1^2 + 2 over the Rational Field1 h& n9 b/ N5 K- @
    true Maximal Equation Order of Q5
    5 @2 C8 Z5 _2 ?; ftrue Order of conductor 1 in Q5
    2 {6 ?( |" @" atrue Order of conductor 1 in Q58 i9 B( _1 a7 E0 `3 P. ]5 h
    true Order of conductor 1 in Q5' g& v& x& |3 q! y+ f
    [
    2 t$ z. N- j# V; T' W7 X/ H- R) X, T    <w - 5*Q5.1, 1>,$ C1 [9 J" E8 a8 e: i; }
        <w + 5*Q5.1, 1>' _7 R! d8 s- X  g7 @. L) l3 A
    ]. k8 [6 l/ i8 X  e9 L
    -8
    : M7 b* o1 B( d: `& v  V3 G0 T$ J6 `6 |5 K  {) ^0 r' Z
    >> FundamentalUnit(Q5) ;. _9 Q: t, C- G, ?. b) j, x& w! @
                      ^% V' @( l: f' R+ l, W9 }
    Runtime error in 'FundamentalUnit': Field must have positive discriminant
    7 i: D% r2 d4 D5 d0 p$ J+ N' X) F
    4 t# T6 _; I. _. m: I2 O6 H1 g. p% n3 w- {
    >> FundamentalUnit(M);, q% p! ^6 @$ h! ?" R6 B
                      ^; A7 v' `' a) n5 ?% P+ a
    Runtime error in 'FundamentalUnit': Field must have positive discriminant9 A, ]* `7 x3 u
      f; c" H& u  v/ \2 G
    86 J2 g5 f" w  R7 t" k2 X
    ) z( c: U7 m+ d, h3 {+ P# v, m. L& r
    >> Name(M, -50);
    # @- R, I) E: t' R. }, E% ~4 X* S       ^
    & w1 W1 Z5 \7 d- }Runtime error in 'Name': Argument 2 (-50) should be in the range [1 .. 1]9 ]- w& _1 b' b$ s8 U7 `

    6 N' C  @$ ^( t* I4 z+ g1) A4 Z1 m% [" \. r
    Abelian Group of order 1' ^' j6 g& g* @$ f# ?0 a' w
    Mapping from: Abelian Group of order 1 to Set of ideals of M0 K0 H4 {. b3 f' i% B6 |" V$ |
    Abelian Group of order 1$ N6 e. d  D/ m+ P- T1 D
    Mapping from: Abelian Group of order 1 to Set of ideals of M. i, h# v; v( a( T
    1
    3 n, G+ I4 A  y! o0 N1# ]. d! [$ O" R% A- N
    Abelian Group of order 1
    1 B0 m% q8 E# Y' u$ h: j) ?Mapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no3 N5 F1 W' |0 A# Z+ F6 p
    inverse]$ C, K& q- V0 {
    1
    : F, h( a7 P0 R# xAbelian Group of order 17 c8 y3 K* |) r- d- f
    Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant7 Q7 H. d& a7 V1 u: J
    -8 given by a rule [no inverse]
    ) n5 j2 d* `4 d8 x2 |Abelian Group of order 1
    8 [7 z# k! a# u7 R1 N& G, YMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant& }- K5 A1 H5 K8 w* r8 w
    -8 given by a rule [no inverse]
    + o8 [! r, h9 Y4 w6 z7 i# C4 rfalse8 K8 J) |4 G4 @' |" c6 }
    false
    5 n& W% ]) r( e+ r4 @
    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    看看-1.-3的两种:
    - w6 M# `* y8 g; X% C  U
    8 v, ]1 q# o$ u* x2 h4 rQ5:=QuadraticField(-1) ;+ Y$ _4 {2 t5 q+ d  V0 i
    Q5;# n7 b3 J8 \7 \( H. c, J1 G/ a

    ' e7 V1 I; Y! {* B0 rQ<w> :=PolynomialRing(Q5);Q;
    & p9 k8 X7 E3 _9 Y; o" ~& {' ]! ZEquationOrder(Q5);
    * R3 u  G  a4 Q: g  ]M:=MaximalOrder(Q5) ;
    - t2 E3 T% D% W; q+ E2 yM;; Q0 N* c; J/ q3 m
    NumberField(M);
    . r2 j" S: W; ~! S' f2 WS1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;0 p7 w: o" |6 c) h) @3 j
    IsQuadratic(Q5);
    1 }+ D7 z" A+ E+ ~/ H5 ^$ JIsQuadratic(S1);* f/ q: S( r* F5 I; x
    IsQuadratic(S4);0 l. K+ {) C" n2 Y# E( H; C
    IsQuadratic(S25);
    3 g! H% c( I1 d6 ^# N; G" dIsQuadratic(S625888888);0 U# c  ?0 @6 U; q8 d" [  ?
    Factorization(w^2+1);  
    8 \6 m5 l. `, W* p9 `5 R% ADiscriminant(Q5) ;
    7 Q4 a. ?8 D# @- m7 P& l* P' TFundamentalUnit(Q5) ;
    % s; i3 ~! S$ _7 I) U% O; }FundamentalUnit(M);% Z! Q, v; F1 T! _# V" w# A5 s7 d
    Conductor(Q5) ;
    $ Z" v, Y( J% R3 Z3 y( a
    0 z3 d& k& L" O- i- ?& a3 H" tName(M, -1);6 v  w* U$ Y& n9 o
    Conductor(M);
    ) W( r( s$ c. J& M; k2 y8 eClassGroup(Q5) ; / `, H' D0 c8 f; x3 S% _: _
    ClassGroup(M);
    - J5 Q5 b+ T0 s) P3 ~, XClassNumber(Q5) ;
    0 r6 r" m/ T: [& LClassNumber(M) ;+ w  v9 y- \* K2 k7 o
    PicardGroup(M) ;7 C- C5 |3 R2 F( y: }7 v
    PicardNumber(M) ;# @  {3 A1 G$ W9 k2 Y( r4 R% E
    * ~2 O. m6 _, V2 e$ O# a
    QuadraticClassGroupTwoPart(Q5);# u8 ~/ B  n, U' r
    QuadraticClassGroupTwoPart(M);" D, }" e( ~) K; j* a
    NormEquation(Q5, -1) ;
    9 j! ]3 {% E0 sNormEquation(M, -1) ;1 t8 I6 i5 L, ]* L

    $ N2 h, E& ^( ^5 UQuadratic Field with defining polynomial $.1^2 + 1 over the Rational Field
    . f' i$ Z  B+ |/ T3 RUnivariate Polynomial Ring in w over Q5
    : [0 P3 C3 T) x# W- EEquation Order of conductor 1 in Q5
    & u: z( J' @# y- N2 N) d' ?Maximal Equation Order of Q5$ s$ L: T4 o3 ~+ A3 N& j/ |' {: ?7 Y
    Quadratic Field with defining polynomial $.1^2 + 1 over the Rational Field# Y  [' I& p: {9 n9 N
    Order of conductor 625888888 in Q5
    ( r! G' E) C3 u/ M4 d1 y& K# ltrue Quadratic Field with defining polynomial $.1^2 + 1 over the Rational Field1 S% }2 G% _" b* R
    true Maximal Equation Order of Q5) ~8 N0 E7 X: @# q, q) d$ Z* [
    true Order of conductor 1 in Q5
    * D; y5 ~3 x1 a# Qtrue Order of conductor 1 in Q5
    7 }9 T' [. Z/ ^true Order of conductor 1 in Q5+ T+ R* o7 j( Z) |& O$ I4 |5 n
    [
    : x3 s8 L8 {3 V) }$ P/ C/ Q( S    <w - Q5.1, 1>,% W5 i7 y* B; @& Y* |6 r8 u) Z7 R
        <w + Q5.1, 1>
    3 R: d+ y4 y/ M8 M7 p- `]% F& ?7 d& u! }; V) X( D  S" W
    -4
    4 S0 V$ ?, V) R3 Z& ]& U! L, \9 R* w/ O
    . z8 j$ w* l8 O& [9 n# ~  D>> FundamentalUnit(Q5) ;
    + Z( i7 s9 A5 }" Y3 @                  ^+ @/ i7 `  ?/ b- Y' b
    Runtime error in 'FundamentalUnit': Field must have positive discriminant
    " y& z7 ^, V0 _8 x5 U" H7 L7 Z2 F5 s8 w+ |
    / b8 T2 V8 I6 b1 U
    >> FundamentalUnit(M);' h1 E1 ?6 f8 I' t
                      ^* F* v; s) C$ t  ]! a$ q
    Runtime error in 'FundamentalUnit': Field must have positive discriminant
    3 |' l. x  P6 x
    1 D! M9 p$ D# h/ X, ^  S4
    " M# o+ L/ t' q7 o# v
    2 i; f, A# ], R" T+ b  S2 G>> Name(M, -1);
      @% V, v" [; q& ]       ^* v- N- D" T* v4 X' ]
    Runtime error in 'Name': Argument 2 (-1) should be in the range [1 .. 1]1 u. z8 b- w+ y9 z+ s% w# R
    . A2 P$ e# j0 l; i9 Y
    1
    " k/ P8 e; R/ S0 oAbelian Group of order 1
    & [: V9 I9 m& A& z. q% U& e4 DMapping from: Abelian Group of order 1 to Set of ideals of M' h: P- B! Y& m$ P! D& K
    Abelian Group of order 1
    * g7 M& R, u2 N) j, @; DMapping from: Abelian Group of order 1 to Set of ideals of M6 @& u  `4 X! V' x, F( r: h
    1
    5 d" ?$ p- n- A0 Y; z1
    6 R; d  @. t) l! h- j" MAbelian Group of order 13 [1 _# j5 A% C. L6 e
    Mapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no* Y+ J0 I% {( b
    inverse]6 x( l2 O- S. Y/ W4 K9 g
    1
    + B  w( X4 u, Z# {; Y* C$ EAbelian Group of order 1
      w& g" {" x; MMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant% r% b9 j1 W7 [  @0 j9 }( s. ^& d! O
    -4 given by a rule [no inverse]
    ! c% _/ N8 g0 Y5 [# oAbelian Group of order 1+ X" p7 ]3 e8 f/ i
    Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant6 k6 n+ R8 C" e1 u* R4 z
    -4 given by a rule [no inverse]
    . y; @/ r; m& q2 ~; Kfalse: P5 ?6 B8 d2 d! p
    false
    6 t/ Z' k, m% T( L===============/ p, l# U/ l( X0 Y
    0 y9 r$ @6 [" y* u
    Q5:=QuadraticField(-3) ;( |2 \9 r1 Q3 N
    Q5;
    # e, {: H- C% v5 ~, n  O; {9 p7 }) ?. V
    Q<w> :=PolynomialRing(Q5);Q;
    ' K7 K: _  \9 F( \6 Y; rEquationOrder(Q5);
    " E5 R$ i) }; G& t1 @3 QM:=MaximalOrder(Q5) ;5 m( [( F) O1 ^
    M;9 y8 g0 \) g& S% U8 X
    NumberField(M);
    " |( c$ E& [# H8 C2 E4 SS1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;
    ' m) l- M* A8 p% aIsQuadratic(Q5);  M+ A9 k$ c0 E6 M9 q0 B. V) i9 R8 r+ x
    IsQuadratic(S1);9 R- r# s2 S0 k! @! b
    IsQuadratic(S4);
    * }  T2 s( h6 N' g& h$ nIsQuadratic(S25);
    1 L) }( F& W) GIsQuadratic(S625888888);
    & r% U4 S% r/ b' vFactorization(w^2+3);  
    ! [) L3 l* O) K$ N7 U: q, HDiscriminant(Q5) ;0 h$ F7 l" D5 z' G7 h5 Q
    FundamentalUnit(Q5) ;% ?1 a$ }- w! E
    FundamentalUnit(M);
    1 N' H: l' {- r4 q6 J7 c9 Z9 vConductor(Q5) ;+ x" I# h* M& a/ z: Q

    8 }. m8 [2 @" _/ g. y( oName(M, -3);
    ! g  R" N! m* C% zConductor(M);5 f- U* F0 F% m- d$ \1 C
    ClassGroup(Q5) ;
    ( ?; g! N7 m7 pClassGroup(M);
    * C; L& X: S* S* RClassNumber(Q5) ;
    0 b0 H- A' G8 `) p, s- ?ClassNumber(M) ;& w  h5 K5 O, z9 T1 O8 m
    PicardGroup(M) ;
    $ ?' }6 U3 e: S/ u  l' ^4 d! UPicardNumber(M) ;& {6 U+ a& H/ N# X9 R) Q6 f* P

    7 ?2 E7 v7 \$ u: j+ {# nQuadraticClassGroupTwoPart(Q5);! `6 _. I3 W: d3 }( b% H9 g1 b
    QuadraticClassGroupTwoPart(M);
    / P; z# B; T  h" W- \$ _NormEquation(Q5, -3) ;
    1 g1 R$ u1 ]5 JNormEquation(M, -3) ;
    $ J4 W1 c% L5 q
    8 e: t& c' a9 t5 g5 W! sQuadratic Field with defining polynomial $.1^2 + 3 over the Rational Field1 ~9 B6 l( M3 G& Y, K
    Univariate Polynomial Ring in w over Q55 [6 c; [9 G; E9 \, [
    Equation Order of conductor 2 in Q5
    ' m3 o( h& }% b. N$ _; uMaximal Order of Q5+ P- c8 ^7 _8 l$ Z: x6 G
    Quadratic Field with defining polynomial $.1^2 + 3 over the Rational Field. ?4 Y* R1 o7 f+ m7 R$ ?  n
    Order of conductor 625888888 in Q5! ~0 A) ?' t; X' s* P
    true Quadratic Field with defining polynomial $.1^2 + 3 over the Rational Field! r& o/ \" P! B1 [) |+ e, q5 h7 n
    true Maximal Order of Q51 _1 u& O( B- W' d
    true Order of conductor 16 in Q5
    % e) _) s; L, D8 [true Order of conductor 625 in Q5) h4 R8 D2 ~$ r. a+ S- Z  F
    true Order of conductor 391736900121876544 in Q5
    " S* R2 b, t, [; L0 z( s- I[4 d% Q: v8 p& @$ _& _+ s
        <w - Q5.1, 1>,8 n8 U7 W& l, P: }2 Y; w9 k$ G; z
        <w + Q5.1, 1>$ h$ e" A) b" C* J) N/ t
    ]+ R8 y% s' }7 g( W5 T  ]
    -33 C( N* X7 \- h. J; Z8 H5 Q
    ) z" K/ Y! L. m
    >> FundamentalUnit(Q5) ;( `3 \- L3 L2 [7 K; o' [" _0 w+ N
                      ^
    & a2 g) ~, C, I$ r, S4 K9 IRuntime error in 'FundamentalUnit': Field must have positive discriminant9 S( ]# k5 B, w* d4 d. }' o: ~

    $ l, f" U! o3 g% Y) l) J7 T3 F, L9 k( S" r3 t
    >> FundamentalUnit(M);
    5 H. Y2 w2 e4 v2 T0 u                  ^" s# a; T8 }0 U; l: j6 z! A' a
    Runtime error in 'FundamentalUnit': Field must have positive discriminant
    ' l0 B9 ^* |  I& V5 o; A$ `% N5 O! T( v; R6 s* x1 I
    3
    2 g) `. d& G. B0 B$ H) o) l$ i" Q: H' r5 e
    >> Name(M, -3);
      {2 o1 w! z' S- A7 f$ a3 D. a( T# T       ^" c8 x0 R) t) ?: F
    Runtime error in 'Name': Argument 2 (-3) should be in the range [1 .. 1]
    2 U( g! C$ a: C! n! X7 Q. X
    6 `! H  S  A4 L7 c% t19 k7 y4 [9 F- {  u9 L5 e4 a. Q. _
    Abelian Group of order 1
    9 z5 D+ u; j) ^0 G1 A4 y2 dMapping from: Abelian Group of order 1 to Set of ideals of M
    $ e' O+ _5 H/ a, BAbelian Group of order 1
    ! D5 M/ P' M' A! d$ R3 a4 xMapping from: Abelian Group of order 1 to Set of ideals of M9 N1 q/ |0 T) w3 K- T
    1$ k+ R6 _: ~: D8 _
    1- g& Q: d" i/ q8 k; y! n
    Abelian Group of order 1
    , B  c% T7 Z, ?Mapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no
    2 W9 v% O: s" G- y1 x5 ?( ginverse]
    8 v4 f! i$ m6 {: m" L6 v- l- J1
    ) v9 [+ N! C/ L" ?Abelian Group of order 1
    7 m2 x1 E! K5 B3 Z, t, bMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant
    , ]' m, u$ v1 G-3 given by a rule [no inverse]2 R3 R+ H0 V: S9 M$ ~. E1 d
    Abelian Group of order 1
    $ r' ]0 G" e  R, g) C  G6 @Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant
    # U" B* |. \* t6 I. ^3 ~( N-3 given by a rule [no inverse]
    ' z, @* _8 }( q: X! g* q$ V9 y; mfalse
    . S* D/ m' I" j' x2 jfalse
    回复

    使用道具 举报

    74

    主题

    6

    听众

    3283

    积分

    升级  42.77%

  • TA的每日心情
    无聊
    2015-9-4 00:52
  • 签到天数: 374 天

    [LV.9]以坛为家II

    社区QQ达人 邮箱绑定达人 发帖功臣 最具活力勋章

    群组数学建摸协会

    群组Matlab讨论组

    群组小草的客厅

    群组数学建模

    群组LINGO

    回复

    使用道具 举报

    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    本帖最后由 lilianjie 于 2012-1-5 15:20 编辑
    6 |0 x& d7 {6 G8 H. D* [) a: m* Y; n9 u2 b  A
    Dirichlet character
    . V7 _; Q! m7 QDirichlet class number formula* A  J8 J3 P3 r* M
    9 T8 h$ ^( y0 J& Q0 O" X
    虚二次域复点1,实点为0,实二次域复点0,实点为2,实二次域只有两单位根; B, c% o3 f- p1 T7 f" u! U

    3 d8 k0 Y8 z$ T-1时,4个单位根1,-1, i, -i,w=4,            N=4,互素(1,3),    (Z/4Z)*------->C*      χ(1mod4)=1,χ(3mod4)=-1,h=4/(2*4)*Σ[1*1+(3*(-1)]=1( T* W9 n8 K1 k7 y7 W! u0 m7 N

    ! m) O/ Z: b9 J/ g/ r4 R-3时  6个单位根                             N=3  互素(1,2),    (Z/3Z)*------->C*         χ(1mod3)=1,χ(2mod3)=-1,
    ) T" D4 L" x% w% `9 F' z* M/ `h=-6/(2*3)*Σ[1*1+(2*(-1)]=1* C4 V* R$ h; i8 {
    - L% K' {/ `; _: O* q8 \. B" h
    -5时  2个单位根                              N=20   N=3  互素(1,3,7,9,11,13,17,19),    (Z/5Z)*------->C*         χ(1mod20)=1,χ(3mod20)=-1, χ(7mod20)=1, χ(9mod20)=1,χ(11mod20)=1,χ(13mod20)=1,χ(17mod20)=1,χ(19mod20)=1,
    - \5 d) a; j4 U/ ?, Y  b
    9 D% G3 [* ?/ L) H5 n) k
    2 r4 N9 N2 ?9 d7 I+ {. H+ N
    ' y7 s& j; `, Lh=2/(2*20)*Σ[1*1-3*1-7*1+9*1-11*1-13*1+17*1+19*1]=22 E3 s" L& v9 G5 }- f6 }( d" }7 a- n
    + L, u$ ^! ~5 G: h
    * U5 V8 U/ u3 D) C1 ?2 e. b
    ! i. \7 K; o9 G6 \# }. c
    -50时  个单位根                          N=2007 N) E1 D3 g1 |1 r9 m
    回复

    使用道具 举报

    15

    主题

    4

    听众

    113

    积分

    升级  6.5%

  • TA的每日心情
    开心
    2012-1-13 11:49
  • 签到天数: 9 天

    [LV.3]偶尔看看II

    Dirichlet character

    21.JPG (79.18 KB, 下载次数: 179)

    21.JPG

    11.JPG (74.76 KB, 下载次数: 178)

    11.JPG

    回复

    使用道具 举报

    15

    主题

    4

    听众

    113

    积分

    升级  6.5%

  • TA的每日心情
    开心
    2012-1-13 11:49
  • 签到天数: 9 天

    [LV.3]偶尔看看II

    回复

    使用道具 举报

    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    本帖最后由 lilianjie 于 2012-1-9 20:30 编辑
    * w8 x  d7 b% j  Q9 V0 @0 s# A7 t) C& _" p: _
    F := QuadraticField(NextPrime(5));4 p. `- \4 k- H4 H5 z; x

    - v7 t' R1 O, G5 w3 yKK := QuadraticField(7);KK;4 O) u3 l8 |; P! H; l7 }* ^
    K:=MaximalOrder(KK);
    6 [0 p, a2 g" YConductor(KK);
    ' \4 X1 i6 J) hClassGroup(KK) ;3 I+ Q" c& b" F$ q' L
    QuadraticClassGroupTwoPart(KK) ;0 ?/ n4 X- I7 e; e9 V1 p5 x7 Y( u
    NormEquation(F, 7);
    # E9 K' [# `* o, R  OA:=K!7;A;7 K) x+ U( Z+ e: g1 j! X
    B:=K!14;B;" N* y9 y: u( K, V& {
    Discriminant(KK)) j% ^, n7 @% S4 {1 V8 Y
    4 S$ g# p0 M! d( _3 O
    Quadratic Field with defining polynomial $.1^2 - 7 over the Rational Field
    8 N9 |: a: ^  {7 h) e/ J; Z' F28
    3 u0 }! A, {& g9 i8 {) {Abelian Group of order 11 c" f$ k7 A' v9 f+ n
    Mapping from: Abelian Group of order 1 to Set of ideals of K
    ! i9 }( P5 x( Q' \7 t2 h1 }& UAbelian Group isomorphic to Z/2
    . ^9 `3 P+ }% X/ P0 }4 K- hDefined on 1 generator/ n# b8 ~* n: h
    Relations:* ~4 W5 m1 e) V- G) i, W0 r
        2*$.1 = 0& r3 {* t0 v$ v0 }! ]) v& ]& ^% l9 U
    Mapping from: Abelian Group isomorphic to Z/2* q0 s4 E# }, G3 i/ ^$ y3 v* T
    Defined on 1 generator
    ) l8 ?4 Y4 B5 X, vRelations:
    + \; S8 a5 S, m9 k$ R. W& f    2*$.1 = 0 to Binary quadratic forms of discriminant 28 given by a rule [no
    0 e0 j& S3 ?" L0 Winverse]/ P3 \, m  x3 f/ H
    false+ d. J* p5 b" S9 _+ |$ Z; R, F
    7
    - C4 Q& l( ?3 {140 `4 }" m( _7 M2 d6 M% X3 x+ C2 y
    28
    回复

    使用道具 举报

    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    本帖最后由 lilianjie 于 2012-1-10 11:23 编辑
      p3 B3 D* G2 e, F% q- b- t' W1 G% o( R( `( M/ B, R
    11.JPG
    ! b7 p0 k  o& K$ C3 l1 Q9 g
    0 v# {! ^$ v+ R2 f4 m 3212.JPG
    , K: Q  Y" K2 z; j1 j& k# h) Q8 Y9 g( q4 x- a9 p1 f
    123.JPG
    3 X% _+ j) v: [3 U# m
    ! V# P/ D3 H& }$ S- [: Z( J" X: @' G分圆域:
    - y6 f5 Y3 m; u2 M: z$ rC:=CyclotomicField(5);C;, g, c0 r# y9 p7 G3 m
    CyclotomicPolynomial(5);
    ) Y: G4 P% N9 S: ~  pC:=CyclotomicField(6);C;) f0 U) `% f% E8 u/ ]" m, S
    CyclotomicPolynomial(6);* y$ p/ I6 T5 I3 P9 [' b
    CC:=CyclotomicField(7);CC;# A& I! O2 @' }5 i, C( J
    CyclotomicPolynomial(7);0 H" C9 L% L5 x# ~  V' I) {2 e
    MinimalField(CC!7) ;4 n& h5 j0 I# P( b- X
    MinimalField(CC!8) ;- V% V; B6 N3 M% w* J% c( f3 P9 M* ^: N
    MinimalField(CC!9) ;
    + c5 I* `' u4 \, QMinimalCyclotomicField(CC!7) ;
    6 Z) @' C: K, u1 S5 ~RootOfUnity(11);RootOfUnity(111);
    1 G1 Z8 G0 b) Z7 X5 p$ uMinimise(CC!123);
    5 X* ]8 d: r4 {5 A. n0 HConductor(CC) ;
    - n$ S% l( u3 y: {) X: b- i, G- TCyclotomicOrder(CC) ;
    & }  q9 l, f; s& S0 c: X3 _4 A8 ~1 [/ K4 d" i; U
    CyclotomicAutomorphismGroup(CC) ;
    $ d5 E- e( S" T
    0 S/ \; T5 ~8 x. u  ]  K+ @7 e, s3 ]Cyclotomic Field of order 5 and degree 4
    ! Y, T" G# B/ M* ~3 I3 T$.1^4 + $.1^3 + $.1^2 + $.1 + 17 e& e+ K7 C8 a4 v: s! u
    Cyclotomic Field of order 6 and degree 2
    3 S3 v8 H4 ?4 \& p/ L$.1^2 - $.1 + 19 z/ \- N; L( ^
    Cyclotomic Field of order 7 and degree 6
    6 C  {3 m3 I2 l$.1^6 + $.1^5 + $.1^4 + $.1^3 + $.1^2 + $.1 + 1, G/ q5 V! }: k+ j4 R: A6 L' y/ p
    Rational Field" p# x; a0 q+ o# N' p5 V3 d
    Rational Field" `& T% k% X/ r- T3 p
    Rational Field% `; x' _/ V- H. _  B( I
    Rational Field
    8 A2 ?- x  h7 ]( C1 w# vzeta_11! r6 u4 C1 }' T& ?. {
    zeta_111
    + a( X( |. F5 Z. A. \! _" u123+ \3 }2 [1 @9 K' G# E7 P
    7
    + G/ a1 [0 z% A2 U1 `. j: h% P79 J1 v: ^- [( W' q( ]. K5 f) m7 z  \2 e
    Permutation group acting on a set of cardinality 6% y2 G% W; N* j( }. S, I
    Order = 6 = 2 * 3' \1 g+ C- z" Y$ v" Y5 v% Z
        (1, 2)(3, 5)(4, 6)
    " o9 u- J3 M$ D# a% l    (1, 3, 6, 2, 5, 4)
    4 v! a) A+ ?* _7 O5 ]7 P) A3 fMapping from: GrpPerm: $, Degree 6, Order 2 * 3 to Set of all automorphisms of   a+ f6 _8 Y8 m" {% q! r
    CC  c3 n8 ^7 n5 h& \# y
    Composition of Mapping from: GrpPerm: $, Degree 6, Order 2 * 3 to GrpPerm: $,
    0 l3 b, Q, F3 \4 V" }Degree 6, Order 2 * 3 and9 G% d# y: u" l( l; I
    Mapping from: GrpPerm: $, Degree 6, Order 2 * 3 to Set of all automorphisms of
    9 O* X6 f) R& l  i0 R: oCC
    回复

    使用道具 举报

    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    本帖最后由 lilianjie 于 2012-1-10 17:41 编辑 8 P  _# X3 x% `( D% b( v
    lilianjie 发表于 2012-1-9 20:44 4 N7 x% J8 |( L! a* n
    分圆域:
    7 x* x) O8 s6 G! V- }C:=CyclotomicField(5);C;% A% C8 `  \  k0 L6 n; o
    CyclotomicPolynomial(5);
    3 M. J& M/ ]5 {& [( W

    ) b. c% }) g; ~" ~& [分圆域:
    # k9 z0 [- A0 K分圆域:123) _% x" S1 \2 L. x- M
    + G- H5 I' \! Q8 `
    R.<x> = Q[]( \) m" A, ]# h# r
    F8 = factor(x^8 - 1)
    1 z- J9 Y1 q0 |" a4 tF8- ~4 D$ b/ P/ C1 z1 x) F, C6 c) s. C

    ) I. r7 j! r+ e( f. w% C(x - 1) * (x + 1) * (x^2 + 1) * (x^4 + 1)(x - 1) * (x + 1) * (x^2 + 1) * (x^4 + 1)
    4 U# w4 L7 v  d8 J# {$ g# V  A" L2 ?" R) Z3 @2 @/ a
    Q<x> := QuadraticField(8);Q;4 |# I0 r) `4 C8 w; M' m" e" N0 G
    C:=CyclotomicField(8);C;& U( ^* w* v# a( {
    FF:=CyclotomicPolynomial(8);FF;/ o5 R* m' U. w( [: V
    ( L2 _! k0 Q- B: |6 _
    F := QuadraticField(8);4 g4 i: h) E7 ?6 |( J6 ~  Y5 [
    F;
    3 q, E6 U8 S! u$ fD:=Factorization(FF) ;D;
      I* M& D6 K$ lQuadratic Field with defining polynomial $.1^2 - 2 over the Rational Field
    ! w: x" X$ x4 a& NCyclotomic Field of order 8 and degree 4( q/ J. I& o! R
    $.1^4 + 1! x, J! F  T/ W) k
    Quadratic Field with defining polynomial $.1^2 - 2 over the Rational Field6 T4 W  i1 @3 j
    [
    & w8 n% N" ]; c& ^1 l5 x4 \6 j; h- }( N' W    <$.1^4 + 1, 1># `& K; f( E* |, q; O4 s) H
    ]4 v$ w% T* m6 e% F4 l- ^4 D- w

    / L+ `% Q' H+ _0 }) ?; ?7 UR.<x> = QQ[]
    ; ?$ L. ^) |4 l; n4 xF6 = factor(x^6 - 1)
    % d+ n6 [1 A! _* O! SF60 R/ B0 d% v, F( ~6 [5 V8 W, I' Y
    2 q2 b& ~* ]$ H. U" A$ q1 D$ n
    (x - 1) * (x + 1) * (x^2 - x + 1) * (x^2 + x + 1)(x - 1) * (x + 1) * (x^2 - x + 1) * (x^2 + x + 1)
    ) e+ `5 O5 N; j
    6 C$ T# T, i0 p* I, LQ<x> := QuadraticField(6);Q;
    4 V  r0 \; ^6 h- mC:=CyclotomicField(6);C;4 h( K* v) q9 T' u5 M. r8 Q
    FF:=CyclotomicPolynomial(6);FF;
    , {' |: ?6 p: h+ m' O
    ! F/ W+ p$ L2 pF := QuadraticField(6);+ N2 `8 R; O( f! N  z- L
    F;' G2 {% _) o0 W0 j( l7 D, J$ @* l. H
    D:=Factorization(FF) ;D;
    1 p/ h# a6 n! s! a9 aQuadratic Field with defining polynomial $.1^2 - 6 over the Rational Field
    , K6 }0 t4 ^+ \, h1 M$ YCyclotomic Field of order 6 and degree 2
    8 v; r3 t/ t7 Y. _0 X) l$.1^2 - $.1 + 1
    + {% m: v1 u0 G% q! r& ?Quadratic Field with defining polynomial $.1^2 - 6 over the Rational Field
    , q. q5 f7 Y% P; W* U) w[
    ! `, Q( n) m2 a0 ^' F    <$.1^2 - $.1 + 1, 1>/ x& j& q2 W3 l
    ]
    6 j4 p+ _9 L) X2 t5 a. q7 ~1 G8 U' s5 V* `- P
    R.<x> = QQ[]
    ' c+ _! u& C: L; u9 _F5 = factor(x^10 - 1)
    6 d7 z: @8 c' F1 OF5! b) `6 Q  q: l3 u7 N/ ]/ `& x. ~% K
    (x - 1) * (x + 1) * (x^4 - x^3 + x^2 - x + 1) * (x^4 + x^3 + x^2 + x +
    8 w6 L/ M& z$ {, L6 b1)(x - 1) * (x + 1) * (x^4 - x^3 + x^2 - x + 1) * (x^4 + x^3 + x^2 + x + 1)- U: t) v0 x! e

    6 v3 N: c& b/ v4 R, z& uQ<x> := QuadraticField(10);Q;
    . _9 q, x( Z% _4 t# uC:=CyclotomicField(10);C;
    , ]5 e/ l8 y, v9 Y0 y  W  O) }5 iFF:=CyclotomicPolynomial(10);FF;
    : Y) x7 J. F: j8 B7 \& Y% C( D5 E) P6 e+ ]
    F := QuadraticField(10);
    ' ^2 A7 m2 k+ s/ Z/ [' RF;
    ; Y/ M; F' w' j5 kD:=Factorization(FF) ;D;
    - F' ]. o) M  g, f! g1 sQuadratic Field with defining polynomial $.1^2 - 10 over the Rational Field2 T( ]7 m6 [3 ^8 W! b' [* K3 @$ z7 a
    Cyclotomic Field of order 10 and degree 4
    2 C/ e. Y2 m  k0 |% x$.1^4 - $.1^3 + $.1^2 - $.1 + 1' [. \2 I, J2 H' d0 T
    Quadratic Field with defining polynomial $.1^2 - 10 over the Rational Field7 V, u% |) W# w
    [1 r1 p1 d& i) O* A- n; K
        <$.1^4 - $.1^3 + $.1^2 - $.1 + 1, 1>
    4 ]) K$ t+ s% j2 m' @]

    c.JPG (217.37 KB, 下载次数: 184)

    c.JPG

    aaaa.JPG (98.21 KB, 下载次数: 173)

    aaaa.JPG

    aaa.JPG (157.27 KB, 下载次数: 174)

    aaa.JPG

    aa.JPG (126.91 KB, 下载次数: 175)

    aa.JPG

    a.JPG (242.91 KB, 下载次数: 194)

    a.JPG

    回复

    使用道具 举报

    15

    主题

    4

    听众

    113

    积分

    升级  6.5%

  • TA的每日心情
    开心
    2012-1-13 11:49
  • 签到天数: 9 天

    [LV.3]偶尔看看II

    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2024-6-17 12:59 , Processed in 0.667795 second(s), 102 queries .

    回顶部