QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 2214|回复: 9
打印 上一主题 下一主题

虚二次域例两(-5/50)

[复制链接]
字体大小: 正常 放大
lilianjie        

43

主题

4

听众

204

积分

升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    跳转到指定楼层
    1#
    发表于 2012-1-4 17:41 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    本帖最后由 lilianjie 于 2012-1-4 17:54 编辑
    7 T2 ^; n4 e1 S3 e& b( M# p! I) X. [' {
    Q5:=QuadraticField(-5) ;
    & I% o& a, M' \) {Q5;
    ! {) i; V* `: B4 v- v' T7 a8 \* V
    - y! s8 v: e' K( p/ FQ<w> :=PolynomialRing(Q5);Q;
    " d4 E  Z! F2 _, N/ a& K' _EquationOrder(Q5);& x. p4 N2 f& D6 H! [
    M:=MaximalOrder(Q5) ;
    ) u* t2 h: c" i; ~* U' xM;4 g; ~6 o4 H0 r* O/ N
    NumberField(M);
    & l: J# e7 l- }7 R* z9 j6 O1 zS1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;
    $ m7 ?2 H. N: RIsQuadratic(Q5);: O) b0 g9 e- W
    IsQuadratic(S1);
    % [5 s1 n3 F4 C1 c$ W+ JIsQuadratic(S4);
    # _- D0 w1 p: v& B6 k8 KIsQuadratic(S25);* O6 ~0 K0 L  ~$ [$ n/ y
    IsQuadratic(S625888888);( z8 M/ J+ ?# b; ~
    Factorization(w^2+5);  
    * p: u% P6 P. q2 ZDiscriminant(Q5) ;
    # ]7 z3 M# j6 x& FFundamentalUnit(Q5) ;
    + _7 k8 U/ Y% S: o/ @( n3 ^FundamentalUnit(M);/ c% E9 `$ q. E/ d( [) a
    Conductor(Q5) ;
    7 ~8 v9 v8 ~! [0 B' T
    / U; T- ]# m& U! }1 BName(M, -5);
    ( l- L, k! J. V" W9 L( J# bConductor(M);
    4 ~; C0 S- j7 V: w3 I1 SClassGroup(Q5) ;
    ' d3 W1 E; s' [: m% Z2 F7 t% ?ClassGroup(M);7 s6 M, L' J6 w5 n6 v( D
    ClassNumber(Q5) ;
    ( x7 H/ f! y8 U2 L& [) KClassNumber(M) ;$ ?: w6 a* [( ~2 j: ?4 a
    PicardGroup(M) ;
    # K; J! t1 `( S; P) r6 QPicardNumber(M) ;8 R0 p' r. o  S0 n6 a
    6 ^+ k5 ^- E! f- l+ y+ T+ V
    QuadraticClassGroupTwoPart(Q5);: T" s, R- w8 L* w% {
    QuadraticClassGroupTwoPart(M);1 s, F/ {; z- x+ d% J$ K
    NormEquation(Q5, -5) ;
    % }* K4 y6 K, H% p# LNormEquation(M, -5) ;6 i- n0 `1 c% l% d
    Quadratic Field with defining polynomial $.1^2 + 5 over the Rational Field
    3 p8 C% S3 F4 k; [+ Y: ^7 {, `Univariate Polynomial Ring in w over Q5! m5 s' Q( @/ |  M
    Equation Order of conductor 1 in Q58 I. T0 E: x0 X% X6 f4 @1 n9 s
    Maximal Equation Order of Q5
    6 l3 \" v+ P2 y% cQuadratic Field with defining polynomial $.1^2 + 5 over the Rational Field
    - |. p# ]; \& r8 Y8 S+ fOrder of conductor 625888888 in Q5
    * p2 U3 I. z/ p" ^9 n6 D, Mtrue Quadratic Field with defining polynomial $.1^2 + 5 over the Rational Field
    . I; Z2 z" w' [6 R+ Jtrue Maximal Equation Order of Q5* y/ |) y* z; n" u1 y# m
    true Order of conductor 1 in Q5
    2 [- o, m  l# V1 u2 g7 Atrue Order of conductor 1 in Q5
    5 {% i& R5 E& c7 Xtrue Order of conductor 1 in Q5
    ; V/ O& [0 M6 ]+ O3 |3 ^/ F[9 {7 Z  b, B% N
        <w - Q5.1, 1>,. h8 c) ~, ^2 j5 h7 E5 X  D
        <w + Q5.1, 1>
    7 U2 N4 }* I  X7 g! A0 D% j]- J6 u/ P: q1 n9 w! X) I+ l. E
    -205 I5 N/ k2 [* g4 x" z7 J
    , ~3 [- c! L  S0 R
    >> FundamentalUnit(Q5) ;
    ' ?, K) k' q6 S3 W                  ^
    $ ^3 d3 B4 ]8 L6 O! E  i8 w, O% WRuntime error in 'FundamentalUnit': Field must have positive discriminant2 C' }+ n: v1 Y& r1 G+ r( {

    : u1 v, J; y& ]6 Z* Z* g& [0 }+ R7 e3 ^* I
    >> FundamentalUnit(M);
    ; G; Z7 m, |2 h: K' ~                  ^5 A& M- ^" j# w$ P3 G
    Runtime error in 'FundamentalUnit': Field must have positive discriminant4 I$ T3 p, o% ~! L# p, E6 c' M
    5 Y. J; O- R4 m: c/ H, r: v
    20
      z$ H; J( o# H/ {5 z  T- t# J! j) z  Y
    >> Name(M, -5);) U8 M' I; `  J- [! n5 z' h
           ^$ h& p+ }" W' o2 l0 c/ n  W
    Runtime error in 'Name': Argument 2 (-5) should be in the range [1 .. 1]; z8 W" a, g5 |! w9 \+ F

    + z" N) W! F4 D# }; K' I6 F6 P1* N* G* t# P$ M) _% B' }+ x
    Abelian Group isomorphic to Z/2
    / m1 P( m8 u3 S+ ?Defined on 1 generator0 Q% X7 N) F5 _  y2 o
    Relations:
    9 V0 h5 i0 Y+ N2 z    2*$.1 = 0! Z& k  W5 V- {  H* b5 F4 u# [
    Mapping from: Abelian Group isomorphic to Z/2
    & w& _& B  c, x! \- I  J/ _Defined on 1 generator
    2 r5 u1 ^9 c4 F8 k0 z. o2 q0 sRelations:
    4 `& a. H$ L. r( M5 s    2*$.1 = 0 to Set of ideals of M6 g$ p+ Q8 S. J) B) g9 e1 n
    Abelian Group isomorphic to Z/22 q3 f/ l) R+ c- j
    Defined on 1 generator) b+ p+ o4 h" e% c! Y% J6 a  I' s
    Relations:3 U  x! R8 U! n$ H' p
        2*$.1 = 0
    ) A) T3 G) N7 N+ S5 `Mapping from: Abelian Group isomorphic to Z/29 J" X0 p4 E& G. Z: t' c
    Defined on 1 generator
    4 X: H6 K! t$ `& q/ \0 kRelations:6 A" J, I( M6 G# |5 i. d7 s" m! I. S
        2*$.1 = 0 to Set of ideals of M4 ?- v- y9 r' t! U4 Q. `5 I2 {" P
    20 ]9 l3 W( q/ b/ A, X
    2
    9 i2 n6 O1 x8 K1 C6 m1 G' w2 r! b9 j  `; k* OAbelian Group isomorphic to Z/2& d9 ?, n% w* p! w
    Defined on 1 generator( w7 ^2 \1 |: A1 Z  g' F2 c
    Relations:! c! G5 @; ?% R
        2*$.1 = 0
    $ v# [4 L5 r. E; c5 L4 N% JMapping from: Abelian Group isomorphic to Z/2# O+ H2 L/ W8 A1 n2 y7 |+ ?
    Defined on 1 generator8 {% X  z/ b/ P5 c) `3 }2 J
    Relations:( s( L7 v5 e& ~4 D+ A
        2*$.1 = 0 to Set of ideals of M given by a rule [no inverse]
    * V0 r& f2 V% l6 Z, G& z% n8 D: e20 A0 X4 {/ T0 f" H! h8 [
    Abelian Group isomorphic to Z/2
    ( M. ?: u8 G2 M4 J9 u. E% q8 q$ PDefined on 1 generator
    - ^# X$ j. E/ I, gRelations:! X, ^8 X1 }2 g% {
        2*$.1 = 0
    % Z/ ^* Y6 p5 O" e4 O3 GMapping from: Abelian Group isomorphic to Z/2$ m; F; O2 {( h2 q, p3 w, l
    Defined on 1 generator! m8 @$ o* ^# S+ c. ]6 i6 s' e% C
    Relations:. p/ i; A, t/ x, _! V& Y8 b
        2*$.1 = 0 to Binary quadratic forms of discriminant -20 given by a rule [no
    , z3 o9 T6 v' t* p( Hinverse]
    # ?5 A& D5 K$ o# e  E4 H/ xAbelian Group isomorphic to Z/2
    " ~5 D: L. [1 p7 r+ |% dDefined on 1 generator' i  n+ J5 K) Q; P  B
    Relations:
    9 C9 R- Q. c4 z* r( k& A6 x    2*$.1 = 0! F3 K. ~: G0 d
    Mapping from: Abelian Group isomorphic to Z/2  P- e6 @$ M% t0 \) _7 D
    Defined on 1 generator: C% i+ ^% E: e, F* f1 N. ?: p
    Relations:) B$ R: e5 X+ f0 k
        2*$.1 = 0 to Binary quadratic forms of discriminant -20 given by a rule [no 9 \1 T. I( H" W
    inverse]
    " E4 `: _0 j% t" s. j0 n; o% Sfalse
    2 O) }* n% O7 V4 D+ K% bfalse
    . N4 l" W) r) c+ i==============+ y) ~2 \3 n+ A8 c7 K  D

    5 Z8 |+ C# f& X
    - y  e& m* \- t0 Z* {Q5:=QuadraticField(-50) ;9 |/ b! [9 f$ a) w% e
    Q5;
    ! |% I& Q3 Z, V, A0 P6 f2 ^; O$ N- r) B
    Q<w> :=PolynomialRing(Q5);Q;( x5 U, R9 K7 J6 l. ~
    EquationOrder(Q5);
    - ^2 E: `& j: u6 O2 ?2 p" a0 iM:=MaximalOrder(Q5) ;$ j. ~5 Z) n. S
    M;7 _0 I+ V  i3 c1 P3 @0 ]
    NumberField(M);% g8 G& A; z, D, _
    S1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;
    9 u& \$ _! Z3 C: |+ z- B7 tIsQuadratic(Q5);" f. J0 s! a. w0 E
    IsQuadratic(S1);# B; y5 R! j+ q2 N3 V/ I
    IsQuadratic(S4);
    - }& M0 c! }. `4 D3 eIsQuadratic(S25);! f0 q% b9 k3 [; ^! B, D2 ^
    IsQuadratic(S625888888);) Q! u7 R7 Z& z% d' x
    Factorization(w^2+50);  
    3 N# M  }  H2 }# ?. Y5 L* d5 cDiscriminant(Q5) ;
    % u+ _' C! l6 k4 `  bFundamentalUnit(Q5) ;4 J) Z" q! e, u. C6 Y4 U6 i6 G
    FundamentalUnit(M);
    ! Z" x+ ^/ ^  y, F. X* ~6 ^5 l+ mConductor(Q5) ;8 q0 E$ q. s2 y$ ]% Z; s
    8 R1 x' I* `2 h" _
    Name(M, -50);! _. J% k' H( J  a7 e1 q
    Conductor(M);, F3 u3 `. m6 H8 L( K0 h: k
    ClassGroup(Q5) ;
    $ `7 ~7 m0 ^) X& S0 C7 [ClassGroup(M);2 E2 b3 p5 @0 n3 J8 Q
    ClassNumber(Q5) ;
    4 Z1 k/ B1 x1 }$ P6 U* Z/ RClassNumber(M) ;; o2 `7 _* l5 O. }1 a1 q
    PicardGroup(M) ;# P1 C0 `6 Y: x+ G$ [0 l1 C! z" r
    PicardNumber(M) ;0 z9 z( _5 l! A7 P% X

    ( @( A% w9 _/ wQuadraticClassGroupTwoPart(Q5);
    1 y4 _1 X. e+ m' o" `QuadraticClassGroupTwoPart(M);
    7 F6 ~9 V% o- V8 [' J6 XNormEquation(Q5, -50) ;8 ]: l  E' o  I6 C
    NormEquation(M, -50) ;
    ) A" i6 K% A" z8 b, [
    ) H: _5 q; T; tQuadratic Field with defining polynomial $.1^2 + 2 over the Rational Field8 x7 h' ^) j" b
    Univariate Polynomial Ring in w over Q5
    8 |1 R0 E7 M' F6 w" ZEquation Order of conductor 1 in Q5
    : n% l0 O" F$ B8 DMaximal Equation Order of Q5: M. ]: e' k; W9 C3 }* `3 a/ M
    Quadratic Field with defining polynomial $.1^2 + 2 over the Rational Field( T8 D+ J- r2 R/ |% q4 s
    Order of conductor 625888888 in Q53 k, }- r: ?- D" t
    true Quadratic Field with defining polynomial $.1^2 + 2 over the Rational Field3 V0 h; v  F* S
    true Maximal Equation Order of Q5
    # Z' K7 n$ e1 A/ |0 \/ a3 x& btrue Order of conductor 1 in Q5
    / S) t& t; d# g" ?true Order of conductor 1 in Q5: x, W0 G; g; ]: M6 @
    true Order of conductor 1 in Q5. f5 T+ N# A- F$ J- a/ B3 U+ i: w$ B& C+ J
    [
    ! x6 F9 L9 O7 v" O( ?+ b    <w - 5*Q5.1, 1>,
    ) ^- a  V' t9 ]# q% z. u    <w + 5*Q5.1, 1>
    4 n$ H* U6 r8 R1 E4 }" c5 G]4 ], @7 |- N$ L/ N6 E
    -8
    $ p" t! ]. o, v3 t* ^, [2 ?6 S
    1 E! O! U8 x$ T) i! b6 X3 K& y>> FundamentalUnit(Q5) ;
    4 \3 Z( u0 P7 z3 o  B: b+ ^+ k                  ^/ |6 {% |* \! b% D& y9 t
    Runtime error in 'FundamentalUnit': Field must have positive discriminant
    : ]( y, n* B$ D* v0 j+ K7 s' T3 t* q

    . h6 V) f+ |' N0 T>> FundamentalUnit(M);
    # v0 G7 _( h: q2 X) p; A                  ^. j6 O2 }. D3 n7 I
    Runtime error in 'FundamentalUnit': Field must have positive discriminant5 ^4 w3 x- U1 q# s0 j

    7 P/ o" w! c" Q3 _8; }1 N8 {0 o3 l  C1 F- m4 X  r
    * E) B6 ^; `0 @9 G! d. i; ~
    >> Name(M, -50);
    ) L2 W5 t4 _0 m9 \; G- F6 p1 b       ^, x# G1 t. y) h1 O* C
    Runtime error in 'Name': Argument 2 (-50) should be in the range [1 .. 1]
    # ]+ i: X! X, y* H4 C- {$ g/ ?: Z( L" m# S7 g) X
    17 B% e# ]1 C# ^. F5 r
    Abelian Group of order 1, `" I3 [# _! b9 r* k4 x; y/ |4 {
    Mapping from: Abelian Group of order 1 to Set of ideals of M
    ; U1 T! g2 L. _4 m: U9 t, T4 D; mAbelian Group of order 1
    ! E/ _, {. s& q+ ]Mapping from: Abelian Group of order 1 to Set of ideals of M
    . h' l4 ?, d8 D4 A  Q5 p1
    + C' Z0 z! ]+ Z& w3 Y& P8 ^" G1
    4 c% b6 E! F3 P2 D; zAbelian Group of order 1
    ; q) S) O/ r; v7 ~+ PMapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no
    * I2 `  ]& v2 m$ Ainverse]
    + `0 t0 h& e, a3 y, W, e; e1' e+ k% Z& N) a+ X
    Abelian Group of order 1
    0 p( M0 c4 B: TMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant
    % n" K' m2 I/ w3 [$ h-8 given by a rule [no inverse]$ y: Y: ~: S+ Q. @, H$ v7 c
    Abelian Group of order 1
    7 ]( m# q5 o& A& OMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant
    " F; L8 f* _* E! w' L-8 given by a rule [no inverse]. D% l1 a6 b4 R- R6 N( f
    false- ^3 v  `3 x8 Q2 r( G
    false) @3 [: ~) L, g  K" R; d
    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    看看-1.-3的两种:
    ) w6 {/ M, M) b2 n0 F/ r7 `# `; A4 {  o. `- h( L
    Q5:=QuadraticField(-1) ;
    1 r- f6 ]* ~/ J6 Q* b- dQ5;9 N' M! t/ A0 b( E

    1 y% [- r- n% e" mQ<w> :=PolynomialRing(Q5);Q;
    ' h3 {. P- G/ aEquationOrder(Q5);  j% W* |4 L& `$ f8 ]/ u
    M:=MaximalOrder(Q5) ;
    0 m8 I' v7 G$ K5 {& Y/ P! YM;; ]; ^; }) A$ i) l4 Q
    NumberField(M);1 D& I1 t, e. G7 X$ u( u
    S1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;
    3 A! ~) J: y5 N# t8 ~, z2 bIsQuadratic(Q5);
    # i( J' K' A/ e6 P0 oIsQuadratic(S1);  f. l+ s& |& \% t
    IsQuadratic(S4);
    * d6 _: J, d5 [" _+ F1 y5 ]' nIsQuadratic(S25);! M( |7 H; F3 h2 k+ P. x
    IsQuadratic(S625888888);& k. K5 [8 x/ V. r4 P4 U1 a0 z
    Factorization(w^2+1);  5 }4 X/ u$ e+ a: j  X9 v! m
    Discriminant(Q5) ;% V) F) H- _% C0 [  @. L6 f
    FundamentalUnit(Q5) ;; o- M; q2 [0 q7 T# Q5 \
    FundamentalUnit(M);
    : e* w1 K/ |' ^0 _9 K0 \Conductor(Q5) ;
    + f3 @; X! t: c0 U8 L' {# J; a
    2 m: S) s" m5 f  ]Name(M, -1);
    % w2 x& l9 D. B" z" S) ~, ?Conductor(M);
    / m6 _- B+ C7 q) H% @ClassGroup(Q5) ;
    5 U4 R! ^% z" S7 e  p5 L& GClassGroup(M);; I3 Q; u# e; {* w$ j' l
    ClassNumber(Q5) ;; P& y2 c- y2 C( j$ h5 B( g* \
    ClassNumber(M) ;
    2 ?; y6 N8 _0 r8 A4 k( A: vPicardGroup(M) ;
    ! ~3 S0 M9 y* d( z+ ~: LPicardNumber(M) ;/ i: c( s9 f  }8 Y- j. S5 _
    % E1 d6 H3 [  |8 i; M# O, ^
    QuadraticClassGroupTwoPart(Q5);( F1 g# j6 m" u6 ?1 Q! v% T- T
    QuadraticClassGroupTwoPart(M);
    9 t& A. V; r: p9 d( \/ CNormEquation(Q5, -1) ;5 e6 k  R7 E. o6 L, C' I
    NormEquation(M, -1) ;! p3 b4 n7 m0 M* j1 \- @$ W

    - W* d, D/ Z: OQuadratic Field with defining polynomial $.1^2 + 1 over the Rational Field5 R( E% O( u, i" w
    Univariate Polynomial Ring in w over Q5
    " K( c  c6 Q& e$ f0 c) f9 v( QEquation Order of conductor 1 in Q5
    * v' _  k4 \# s8 @% |# i$ f% ~Maximal Equation Order of Q5
    2 _. U$ R, j: }- tQuadratic Field with defining polynomial $.1^2 + 1 over the Rational Field' D' Q( j% j7 z* E
    Order of conductor 625888888 in Q5
    + N' i! I+ H* Utrue Quadratic Field with defining polynomial $.1^2 + 1 over the Rational Field
    6 P, V! y) p# {+ S$ Ltrue Maximal Equation Order of Q5* K0 [) L# F" L! U
    true Order of conductor 1 in Q59 ]* b* J* s4 g0 P9 X' g
    true Order of conductor 1 in Q5
    : V. q5 m: K/ C) \! b( \true Order of conductor 1 in Q59 y) d3 Z6 s$ t, f. M' y
    [- ?; _0 c7 v5 x$ x3 }- I
        <w - Q5.1, 1>,. {3 u" u8 B% g& A: \
        <w + Q5.1, 1>4 S9 `! B" ^2 H3 K
    ]1 Z+ V. y* I  g' z3 }9 d
    -43 y7 e. b! m: _/ ~# Q. B

    ' P) U1 f- C& T1 R( e>> FundamentalUnit(Q5) ;' n8 Z! J- i- f. J1 G& R
                      ^$ A. c  a* V9 F3 d( @8 B
    Runtime error in 'FundamentalUnit': Field must have positive discriminant
    " T& }4 g4 w- s1 U( {) H4 @: |! p6 m! X  M

    % ?0 m0 \1 p5 c6 c, d5 {>> FundamentalUnit(M);
    ( c) q. V- K, r. y: w1 J                  ^
    & S, E) X3 |8 H, M. ]# FRuntime error in 'FundamentalUnit': Field must have positive discriminant/ _8 Z# w- N* H; }9 A# O' B, b  ]
    : b6 S' i6 k' ~& V# T# v: l) m
    4
    5 O2 v3 r" T5 Y% N. i$ M, [8 c" Q8 D+ ~- }; {& z( Y
    >> Name(M, -1);
    % r3 i8 j9 B$ q) Y$ p( q, g       ^
    8 T/ H7 ?7 z1 h  |& B7 m# nRuntime error in 'Name': Argument 2 (-1) should be in the range [1 .. 1]2 d% s# F4 W* F$ p; {

    & w$ V) n0 [2 N2 B) u1* a+ @# j+ J3 O* ~& N
    Abelian Group of order 1
    6 q, S  ~/ _+ S1 R% J2 m, eMapping from: Abelian Group of order 1 to Set of ideals of M5 _! i2 e( c2 V3 |( x
    Abelian Group of order 1
    7 N- }: M5 {5 N0 NMapping from: Abelian Group of order 1 to Set of ideals of M2 q0 L% x: G* j9 b# T9 ^; `+ a
    1
    + e) N5 Q% Z2 _4 M9 u1 ^1. z4 M3 h& O; {! W; `
    Abelian Group of order 1/ ^9 X7 o) [, z
    Mapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no
    2 J/ V2 g+ B  B" B! D  finverse]; \# A. H3 a8 W" Z$ r
    1
      U( \) @: B7 v# \( \Abelian Group of order 18 a9 L: P3 }4 Z4 i8 A4 O
    Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant& Z( k( F& U. ?- B8 h; s
    -4 given by a rule [no inverse]
    4 Q1 d' }" B3 aAbelian Group of order 1
    + w; d' V% L* s: H& Y5 ]0 O7 K# oMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant6 X# X$ r- Q+ \5 [% z; ]
    -4 given by a rule [no inverse]
    - ?; e$ ]; e1 I  Z# Y+ nfalse
    - {2 f) Y. q4 {9 a7 t, Mfalse
    0 x0 x' V* ?) {+ w+ P" Q3 n===============
    * w# h0 ?/ N% C/ t2 L
      j/ X$ G* a  Y. jQ5:=QuadraticField(-3) ;
    & T* t" p2 U6 t2 Z; z: zQ5;( T) H4 t! t, |. Y9 Q" O
    4 J) J/ I9 _6 {# N8 d! d
    Q<w> :=PolynomialRing(Q5);Q;
    * N( \& Y0 b- S7 ?EquationOrder(Q5);, R* F  v8 G/ ?
    M:=MaximalOrder(Q5) ;, b3 m4 C5 b" P' H: S
    M;7 \* {$ G( H3 M! {, W
    NumberField(M);
    5 L$ x5 l" v3 i. N! zS1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;- T1 f. S! Z. `. ]
    IsQuadratic(Q5);
    0 b# q" T6 |# N8 V8 }% L. ^- w$ cIsQuadratic(S1);
    ' ]+ N) z/ V  jIsQuadratic(S4);
    ( _) N' ?% D0 _) v4 fIsQuadratic(S25);
    4 `" k6 [$ m, ]IsQuadratic(S625888888);) `  n  T- M' {2 Y7 }: z
    Factorization(w^2+3);  
    $ G/ U' i) {4 X, j2 c& m, v) VDiscriminant(Q5) ;2 K: k! R1 R7 O5 Y- G: s: z! p
    FundamentalUnit(Q5) ;& `1 O5 b7 S7 Z& t! @1 R
    FundamentalUnit(M);
    - }6 I! K- R# n& U2 n3 |Conductor(Q5) ;
    # Y, p+ L2 r% W4 i) e8 ]& [: D  Y% k
    Name(M, -3);
      V1 T& ], d+ B% DConductor(M);0 K* ^7 s4 i3 v$ K! g' F6 x, l
    ClassGroup(Q5) ;
    0 N. v, f, E6 @  GClassGroup(M);6 D; J0 o4 m( J/ j1 L: s4 J0 [+ Q
    ClassNumber(Q5) ;# z6 w0 P% o+ L; s, h; U, V  J
    ClassNumber(M) ;" a2 V2 v5 M) N% T. y6 p& B
    PicardGroup(M) ;
    ) U& F+ w# _' Q- `6 e6 Z& \+ }9 a0 C" LPicardNumber(M) ;9 M# @6 Z$ u9 E* d) c& z: m
    + _; g: K# T' M7 l5 b
    QuadraticClassGroupTwoPart(Q5);
    9 `/ i: a( n+ M0 k, l! F6 T/ k1 zQuadraticClassGroupTwoPart(M);
    2 K6 C/ u  A  J" ]  l/ pNormEquation(Q5, -3) ;
    1 ]- y/ X& S& C6 eNormEquation(M, -3) ;, N% }$ B' n0 \- ?2 P

    / j6 b+ ]" J/ k4 AQuadratic Field with defining polynomial $.1^2 + 3 over the Rational Field
    * u" C) S/ q, KUnivariate Polynomial Ring in w over Q5( }  c$ z# g* w! J
    Equation Order of conductor 2 in Q5
    ! r. U& a! _! ]0 C0 S$ O; LMaximal Order of Q5
    7 Y* S  E3 F- i+ j' ]7 WQuadratic Field with defining polynomial $.1^2 + 3 over the Rational Field# f( ]! U# R+ B
    Order of conductor 625888888 in Q5
    7 B( |6 v0 P- _# \9 G, x5 Htrue Quadratic Field with defining polynomial $.1^2 + 3 over the Rational Field
    * n3 V3 O/ g; N3 u1 ~true Maximal Order of Q5: N4 }+ E: h4 [4 {
    true Order of conductor 16 in Q5. s: U; o: n" G
    true Order of conductor 625 in Q5
    ' g) R, I$ _6 Ptrue Order of conductor 391736900121876544 in Q5
    ! A: @( @6 }& `[
    5 e; h0 m& s! ^% F% a7 y    <w - Q5.1, 1>,0 S; D. M7 I0 B2 k3 ?) U! v6 R8 X
        <w + Q5.1, 1>
    ' W! ^1 {; Z2 t. X: U]' w: Z, w) `! U; q6 w2 O
    -3
    9 Y* F# J3 d) ?# O9 Z
    0 m" f9 ?; ]' J" k  {>> FundamentalUnit(Q5) ;
    # {9 M& y3 V  Z) b! s  r                  ^* O4 s' ^- M- L& i' K
    Runtime error in 'FundamentalUnit': Field must have positive discriminant  ]6 l+ Q8 w3 o% h8 ?3 H, x3 O
    . `% _" y3 D. t* ^5 S  i( ~

    ) \  \$ M8 o, Y% a7 {" ~>> FundamentalUnit(M);
    ; o* F5 q) k/ |2 T$ z/ y                  ^2 s( @* v" q* h, W1 e$ F
    Runtime error in 'FundamentalUnit': Field must have positive discriminant! ]4 X% i( T% B8 E

    2 Q8 w/ C; M3 t6 p: l32 [' d5 Z1 b: J8 l$ V1 u

    & W# \& R* R/ o' R( b, ?>> Name(M, -3);
    3 c/ G& O9 P" m( ]5 n! [       ^) a$ v7 |3 [+ a9 i# Y9 _4 N3 F  _
    Runtime error in 'Name': Argument 2 (-3) should be in the range [1 .. 1]
    2 E# o; l  a+ e9 T0 u) e" c
    - A8 {7 t, T7 S/ l) h1 d7 j1
    9 i/ t5 [. C8 i% RAbelian Group of order 1$ E/ q- M1 n7 ^  M% H) \% ?
    Mapping from: Abelian Group of order 1 to Set of ideals of M
    : N: j& I2 z8 C. w, wAbelian Group of order 1" s1 \. G% E6 p+ D4 z
    Mapping from: Abelian Group of order 1 to Set of ideals of M
    ; ]2 u) t3 P3 |1/ v( c. I1 V: M/ D
    1, _  o% _; K* M. ?# U2 B& @- F
    Abelian Group of order 1: w8 ]; c8 p! B, z5 ?5 B
    Mapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no
    ' U# X4 n! L# n# G7 finverse]. w% h. j7 R* H
    1
    2 K; \& ~, Z% fAbelian Group of order 1
    $ ^0 B  _# m& m/ R5 j) y: ^! oMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant
      B9 I% Q2 L& \, Y8 K! ]8 c-3 given by a rule [no inverse]
    7 I$ g; L+ Q0 ?6 C( XAbelian Group of order 1" |! H1 }" D( c( z6 m
    Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant
    * Q6 b  {- L% a# v-3 given by a rule [no inverse]
      q5 J/ R' w# N' w0 `false
    4 R; r! \; |! f- ffalse
    回复

    使用道具 举报

    74

    主题

    6

    听众

    3283

    积分

    升级  42.77%

  • TA的每日心情
    无聊
    2015-9-4 00:52
  • 签到天数: 374 天

    [LV.9]以坛为家II

    社区QQ达人 邮箱绑定达人 发帖功臣 最具活力勋章

    群组数学建摸协会

    群组Matlab讨论组

    群组小草的客厅

    群组数学建模

    群组LINGO

    回复

    使用道具 举报

    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    本帖最后由 lilianjie 于 2012-1-5 15:20 编辑 , U8 T/ F0 J, n; T6 {! O

    0 s+ P* b6 O  y1 ~3 n6 ADirichlet character* M/ B) u5 Z& `( I6 {1 M
    Dirichlet class number formula
    1 c9 [, v( ~# Z$ e, T8 l: U9 H) n) T3 ?: U3 \
    虚二次域复点1,实点为0,实二次域复点0,实点为2,实二次域只有两单位根
    ) W4 s4 ]; S* i" i; f2 A+ Y$ Y( _. T8 _% S: _- s7 J) C
    -1时,4个单位根1,-1, i, -i,w=4,            N=4,互素(1,3),    (Z/4Z)*------->C*      χ(1mod4)=1,χ(3mod4)=-1,h=4/(2*4)*Σ[1*1+(3*(-1)]=1
    ! {, b! m, r+ F* Q2 ?6 C8 j1 L" S
    ! R0 X8 }: r1 r& k-3时  6个单位根                             N=3  互素(1,2),    (Z/3Z)*------->C*         χ(1mod3)=1,χ(2mod3)=-1,
    5 L/ T2 a; W/ ^; Z4 [: V' F* ?1 [h=-6/(2*3)*Σ[1*1+(2*(-1)]=13 ^) ~" q1 r' A
      X6 Y& K* `4 Z7 s2 e6 D4 l
    -5时  2个单位根                              N=20   N=3  互素(1,3,7,9,11,13,17,19),    (Z/5Z)*------->C*         χ(1mod20)=1,χ(3mod20)=-1, χ(7mod20)=1, χ(9mod20)=1,χ(11mod20)=1,χ(13mod20)=1,χ(17mod20)=1,χ(19mod20)=1,
    0 T' w( L- |" D1 j  f% o
    & M' l! \2 d. U
    : q8 A# u" w; X, F9 G' X' `1 b+ t' @. B: D# G! K
    h=2/(2*20)*Σ[1*1-3*1-7*1+9*1-11*1-13*1+17*1+19*1]=2
    ) N7 i4 S% m4 F3 i
    7 d4 P! Y) g2 O+ z
    6 n# J  a) D0 }2 m
    " A; X' [/ |4 T-50时  个单位根                          N=200- d0 A* J9 E" p% `* J* G
    回复

    使用道具 举报

    15

    主题

    4

    听众

    113

    积分

    升级  6.5%

  • TA的每日心情
    开心
    2012-1-13 11:49
  • 签到天数: 9 天

    [LV.3]偶尔看看II

    Dirichlet character

    21.JPG (79.18 KB, 下载次数: 180)

    21.JPG

    11.JPG (74.76 KB, 下载次数: 178)

    11.JPG

    回复

    使用道具 举报

    15

    主题

    4

    听众

    113

    积分

    升级  6.5%

  • TA的每日心情
    开心
    2012-1-13 11:49
  • 签到天数: 9 天

    [LV.3]偶尔看看II

    回复

    使用道具 举报

    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    本帖最后由 lilianjie 于 2012-1-9 20:30 编辑
    . J$ s* x7 Q& c3 U/ z; M: ^2 n: P& H
    F := QuadraticField(NextPrime(5));' D9 K, H+ z, V+ M: B4 P
    ; j: ~: v8 }8 {  f3 ~4 z% p2 f
    KK := QuadraticField(7);KK;
    1 G* t% a9 O& XK:=MaximalOrder(KK);
    5 R6 z9 h  @: j# r' S4 X' ~Conductor(KK);
    8 u, i* F0 t  J% jClassGroup(KK) ;
      f; e% S& u$ Q9 d- ]: `, g0 @QuadraticClassGroupTwoPart(KK) ;
    ) c+ f$ q8 V# t- J& u" q" ?% t8 fNormEquation(F, 7);+ f. o3 j0 q8 Q/ f+ v! k
    A:=K!7;A;
    * f! L3 E. y* ~* ?+ ]2 zB:=K!14;B;
    3 |$ L. o: F0 E# hDiscriminant(KK)8 h  s; }$ {* V3 B! Q$ c, m3 w

    ' O, P2 j, M3 C/ D  TQuadratic Field with defining polynomial $.1^2 - 7 over the Rational Field
    ! w6 e3 h8 g8 H9 I3 }( Y28: }+ e4 g( R+ k5 I4 A, |1 A
    Abelian Group of order 1) ]) I7 [4 ~' E8 A2 V3 b' h8 O
    Mapping from: Abelian Group of order 1 to Set of ideals of K, ], C, u% A  k+ f- I1 R" j
    Abelian Group isomorphic to Z/2
    7 o+ `- W6 _7 l5 h# C, o2 {Defined on 1 generator: G3 O5 s( ~2 N3 o# O# g- d
    Relations:
    / k0 t/ m+ V2 b# {5 W    2*$.1 = 0
    ; t& S5 }$ x0 Q% x( f4 D4 dMapping from: Abelian Group isomorphic to Z/2
    6 k* a+ }" ]7 e+ B1 \" e& v* ODefined on 1 generator
    ! Y0 c0 \9 j; z8 w8 ~# e/ kRelations:  U, S+ j" b  P+ \; E2 R
        2*$.1 = 0 to Binary quadratic forms of discriminant 28 given by a rule [no
    6 ^; w" A0 T1 g; ginverse]
    # t: \7 ]% C* Gfalse
    + `  k( S* a6 g1 j; p% W3 J7
    0 t% w; G1 d# `( H7 T3 n14
    - q: p+ O' U! F" F. {% D28
    回复

    使用道具 举报

    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    本帖最后由 lilianjie 于 2012-1-10 11:23 编辑
    # `( e& a6 X# G; n
    1 s' n8 P8 t4 g& H. F9 R 11.JPG
    " p/ ^5 [1 L  H
      J# o: H; o2 ?' C# |* P 3212.JPG $ {4 Y1 {$ R4 j, B
    7 k: p, J9 g8 j9 [8 V" H" E
    123.JPG
    6 r- f$ z& J$ X/ h
    ( j) K. Z* }# I0 C3 {分圆域:
    - M' l3 g( p6 L5 `: t% c9 @& iC:=CyclotomicField(5);C;
    ! Z  h( J! [" T# T' m% QCyclotomicPolynomial(5);5 S6 }+ k1 J0 F; N8 Q0 H
    C:=CyclotomicField(6);C;
    ' ^" |/ V! U3 d4 @) F) X7 ^CyclotomicPolynomial(6);
    ; |: |. N1 ]$ SCC:=CyclotomicField(7);CC;  d8 x. y6 C2 Z3 J' l
    CyclotomicPolynomial(7);
    , L+ N. O' \2 w* h4 tMinimalField(CC!7) ;7 ]0 e: l% u/ o4 ]: {: i7 s  |
    MinimalField(CC!8) ;
    8 J" ^: Q5 P( O; B" z  E/ K: F) a) eMinimalField(CC!9) ;, O9 A; i( n% b$ R, X' t
    MinimalCyclotomicField(CC!7) ;
    6 B0 \! D; S/ xRootOfUnity(11);RootOfUnity(111);6 g& Z  T/ E( [: C
    Minimise(CC!123);
    3 O/ d' q8 G6 a: p* g- N" lConductor(CC) ;. _! w8 u# f6 {, G) D. w
    CyclotomicOrder(CC) ;
    & T& K4 }  M% \+ t4 U; h: |* |" @6 l6 \9 O4 p
    CyclotomicAutomorphismGroup(CC) ;
    7 ~3 F0 Y( Z! z$ J) E" p: Q- N5 ]$ ?; U4 U/ [
    Cyclotomic Field of order 5 and degree 4
    ) H) o9 f6 Q3 B8 N+ X$.1^4 + $.1^3 + $.1^2 + $.1 + 1
    ' l* l: x% \1 wCyclotomic Field of order 6 and degree 2
    . q( O2 v8 x5 }; z5 ?( G9 E$.1^2 - $.1 + 1
    8 G* K: z8 r# b: x8 K- ?Cyclotomic Field of order 7 and degree 6# ]% V) a) v# U
    $.1^6 + $.1^5 + $.1^4 + $.1^3 + $.1^2 + $.1 + 12 G$ r' T5 R# E  \" a, d9 O! H! d
    Rational Field. K* \( d( J* |) P" ?; ?3 h( E
    Rational Field! i. Y5 k) p2 e
    Rational Field$ d1 Q2 h4 D) g2 [" j
    Rational Field
    9 C2 Q% s+ U; L5 y2 M7 W5 Tzeta_11
    4 ~( S* u" _- a! pzeta_111
    0 l% ^& J% `2 ?6 v: J! }123! @4 B9 V$ F0 H0 m
    7
    " D* C1 [8 V4 p$ A7
    # {& Z- P& Y' TPermutation group acting on a set of cardinality 6
    ; m/ f) `3 M& k; k. d$ OOrder = 6 = 2 * 3
    : A9 r; i) v; t    (1, 2)(3, 5)(4, 6)
    / L. m* m  h+ v7 f    (1, 3, 6, 2, 5, 4)
    . J3 e# }+ J0 m6 ]# YMapping from: GrpPerm: $, Degree 6, Order 2 * 3 to Set of all automorphisms of
    ! W$ K' D3 Q1 a# v$ a6 F4 ~CC# x6 p2 ]9 e4 k& {5 J) h: w4 G
    Composition of Mapping from: GrpPerm: $, Degree 6, Order 2 * 3 to GrpPerm: $, 6 f, p6 J8 T4 c2 O0 c
    Degree 6, Order 2 * 3 and
    & g) t- F1 |6 yMapping from: GrpPerm: $, Degree 6, Order 2 * 3 to Set of all automorphisms of
    % G% b2 @1 k: Q' A6 @9 ECC
    回复

    使用道具 举报

    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    本帖最后由 lilianjie 于 2012-1-10 17:41 编辑 7 o7 G1 u/ l" G# e: i( f
    lilianjie 发表于 2012-1-9 20:44 4 l+ [: n9 x: t& J: B
    分圆域:. C) _( l8 {+ s9 ~) q* q
    C:=CyclotomicField(5);C;
    * q; g4 @  D/ M( {9 `CyclotomicPolynomial(5);
    1 a' Q3 k3 c* z+ T. {. v& G
    3 ?, P' l  Q: r& T5 _
    分圆域:- V$ l) p- `6 @# F0 N' a
    分圆域:123/ z2 y- ^1 K& g4 J
    ; ^+ ?) f! Q8 p+ J5 p# A8 V
    R.<x> = Q[]
    + x5 @$ B! s0 Z. x! \/ G: B: W5 ?F8 = factor(x^8 - 1)" v0 p) [/ T; Q8 R( I+ |
    F8
    - ~( X- ?/ Y1 U6 M0 W8 }+ _+ I# ?; g6 `. S# ]
    (x - 1) * (x + 1) * (x^2 + 1) * (x^4 + 1)(x - 1) * (x + 1) * (x^2 + 1) * (x^4 + 1) 2 _/ h6 d7 b/ ]3 u( [  H& ^9 l6 m# D& i

    ' {6 Z2 H* ^' }/ j: GQ<x> := QuadraticField(8);Q;4 _  I/ G/ K* ~# |$ B
    C:=CyclotomicField(8);C;
    2 P7 i# b# A5 z- s3 oFF:=CyclotomicPolynomial(8);FF;
    6 T: s; u# E* p- \& x" B
    . B* N8 {' Y6 BF := QuadraticField(8);3 `  f% d, Y6 r1 G4 d1 S
    F;
    7 o2 @9 ~& X. X# C& hD:=Factorization(FF) ;D;% J6 C" o* k* }' S
    Quadratic Field with defining polynomial $.1^2 - 2 over the Rational Field# B9 O" S+ L  C! Y; Z
    Cyclotomic Field of order 8 and degree 4
    ! d: Q6 Z" c. `2 s$.1^4 + 1
    3 G  f* ^$ V4 ]Quadratic Field with defining polynomial $.1^2 - 2 over the Rational Field
    3 O6 d2 Z$ d2 P8 \' R[
    " |- j& @* L  k9 U5 l    <$.1^4 + 1, 1>/ n  P0 M- L9 J8 r. ~0 l. ~
    ]/ ]  A, `2 y; |2 f! y/ E5 _/ r

    ' c# h1 p+ v! ]6 {/ k3 e5 mR.<x> = QQ[], ^( ?* z6 U* m
    F6 = factor(x^6 - 1)
    - N! v5 ^) b$ i+ iF6$ Q! J6 l6 u; d/ f* [! d& E2 \
      J# D' _, u, V
    (x - 1) * (x + 1) * (x^2 - x + 1) * (x^2 + x + 1)(x - 1) * (x + 1) * (x^2 - x + 1) * (x^2 + x + 1) / u$ K6 q. B; ^; z& H) i1 ^
    ) \" i4 O/ i. [( w* v  H
    Q<x> := QuadraticField(6);Q;
    ) ]1 c6 m8 N" l; j- lC:=CyclotomicField(6);C;
    . Z, p% g, q6 }6 ^3 j+ EFF:=CyclotomicPolynomial(6);FF;
    ) y5 L5 J- ^; Q& P9 }1 K
    / L' O, ], [& E% S3 r- SF := QuadraticField(6);
    $ K4 j+ E% \  N  J- YF;/ D& d1 v0 p+ u
    D:=Factorization(FF) ;D;) q! Y6 }) i+ A4 D. z5 V5 F
    Quadratic Field with defining polynomial $.1^2 - 6 over the Rational Field
    6 Z$ \, j! Z8 H5 |3 a# C+ J9 qCyclotomic Field of order 6 and degree 2
    9 u2 Q/ {+ _, X. W+ q  H. x0 T$.1^2 - $.1 + 1* d$ |# H0 Q% s4 T( L  |' ~
    Quadratic Field with defining polynomial $.1^2 - 6 over the Rational Field% j7 h# \0 W) ~2 ^
    [
    ! S, a2 I' w- a  i, L9 G    <$.1^2 - $.1 + 1, 1>
    & Z2 e3 Q& M2 H; @  Q]
    ( ^" N& O6 K. R" g0 l! i% m/ R* t- f$ F
    R.<x> = QQ[]- I2 K7 \/ X; H2 d# f; _
    F5 = factor(x^10 - 1); h8 j) j' }7 }" S5 J
    F51 S3 ^: R# r" W
    (x - 1) * (x + 1) * (x^4 - x^3 + x^2 - x + 1) * (x^4 + x^3 + x^2 + x +
    6 m' E7 y* G. u1)(x - 1) * (x + 1) * (x^4 - x^3 + x^2 - x + 1) * (x^4 + x^3 + x^2 + x + 1)
    ! i, a' T: K2 h8 }4 V
    9 D0 s- E% g2 M8 |. iQ<x> := QuadraticField(10);Q;
    ! R6 w: U/ |# q& ]4 l: k  h7 f6 PC:=CyclotomicField(10);C;
    8 }; X8 o5 N1 T% f" E$ hFF:=CyclotomicPolynomial(10);FF;
    $ H4 r8 a5 G2 C: S3 @& B, @6 y: L2 Y' F, o" V  `
    F := QuadraticField(10);+ S5 ~/ O! z1 ?( u+ H; ^) \
    F;& b" p# j3 k: r
    D:=Factorization(FF) ;D;7 V/ v, l" {, |+ C5 `3 U
    Quadratic Field with defining polynomial $.1^2 - 10 over the Rational Field1 j0 Q' ^0 }5 |# X' V
    Cyclotomic Field of order 10 and degree 4, N2 C# _% e2 f6 _
    $.1^4 - $.1^3 + $.1^2 - $.1 + 1& x$ V+ a& f5 w$ q
    Quadratic Field with defining polynomial $.1^2 - 10 over the Rational Field
    . S6 W2 l6 t7 F1 _0 W. h[8 o: Q& z7 g" R, ^
        <$.1^4 - $.1^3 + $.1^2 - $.1 + 1, 1>( U0 p) C" M( p  E  k. T
    ]

    c.JPG (217.37 KB, 下载次数: 184)

    c.JPG

    aaaa.JPG (98.21 KB, 下载次数: 173)

    aaaa.JPG

    aaa.JPG (157.27 KB, 下载次数: 174)

    aaa.JPG

    aa.JPG (126.91 KB, 下载次数: 175)

    aa.JPG

    a.JPG (242.91 KB, 下载次数: 194)

    a.JPG

    回复

    使用道具 举报

    15

    主题

    4

    听众

    113

    积分

    升级  6.5%

  • TA的每日心情
    开心
    2012-1-13 11:49
  • 签到天数: 9 天

    [LV.3]偶尔看看II

    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2024-6-17 13:40 , Processed in 0.685081 second(s), 102 queries .

    回顶部