QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 2150|回复: 0
打印 上一主题 下一主题

每日科技报告5月1日Supercomputers crack sixty-trillionth binary digit of Pi-squre

[复制链接]
字体大小: 正常 放大

522

主题

10

听众

4072

积分

升级  69.07%

  • TA的每日心情
    奋斗
    2015-1-3 17:18
  • 签到天数: 6 天

    [LV.2]偶尔看看I

    自我介绍
    学习中!

    优秀斑竹奖 元老勋章 新人进步奖 最具活力勋章

    群组Matlab讨论组

    群组C 语言讨论组

    群组每天多学一点点

    群组数学趣味、游戏、IQ等

    群组南京邮电大学数模协会

    跳转到指定楼层
    1#
    发表于 2011-5-1 17:31 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    Supercomputers crack sixty-trillionth binary digit of Pi-squared
    Australian researchers have done the impossible -- they’ve found the sixty-trillionth binary digit  ...


    Australian researchers have done the impossible -- they’ve found the sixty-trillionth binary digit of Pi-squared! The calculation would have taken a single computer processor unit (CPU) 1,500 years to calculate, but scientists from IBM and the University of Newcastle managed to complete this work in just a few months on IBM's "BlueGene/P" supercomputer, which is designed to run continuously at one quadrillion calculations per second.
    Their work was based on a mathematical formula discovered a decade ago in part by the Department of Energy's David H. Bailey, the Chief Technologist of the Computational Research Department at the Lawrence Berkeley National Laboratory. The Australian team took Bailey’s program, which ran on a single PC processor, and made it run faster and in parallel on thousands of independent processors.

    "What is interesting in these computations is that until just a few years ago, it was widely believed that such mathematical objects were forever beyond the reach of human reasoning or machine computation," Bailey said.   

    "Once again we see the utter futility in placing limits on human ingenuity and technology."

    A binary digit or "bit" is the “DNA” of all computing. In a computer, everything is represented as strings of zeroes and ones. The decimal number 12, for instance, is represented as "1100," and the fraction 9/16 is represented as “0.1001.”  So as one might imagine, calculating the sixty-trillionth binary digit of a number is quite a feat.

    According to Professor Jonathan Borwein of the University of Newcastle, this work represents the largest single computation done for any mathematical object to date. The idea for this project sparked when IBM Australia was looking for something to do related to "Pi Day" (March 14) on a new IBM BlueGene/P computer system. Borwein proposed running Bailey’s formula for Pi-squared, as the calculation had been done for Pi itself. The team also calculated Catalan’s constant, another important number that arises in mathematics.

    Why Pi?
    The importance of Pi has long been known -- multiply it by the diameter of any circle to get the circumference. Ancient Egyptians used this number in their design of the pyramids, meanwhile ancient scholars in Jerusalem, India, Babylon, Greece and China used this proportions in their studies of architecture and symbols.

    Yet despite its longevity, Pi is one of the most mysterious numbers in mathematics. Because it is "irrational," Pi can never be expressed as a finite decimal number and humanity will never have anything but approximations of it. So why bother solving Pi to the ten trillionth decimal unit? After all, a value of Pi to 40 digits would be more than enough to compute the circumference of the Milky Way galaxy to an error less than the size of a proton.

    According to Bailey, one application for computing the digits of Pi is to test the integrity of computer hardware and software, which is a focus of Bailey’s research at Berkeley Lab. “If two separate computations of digits of Pi, say using different algorithms, are in agreement except perhaps for a few trailing digits at the end, then almost certainly both computers performed trillions of operations flawlessly,” he says.

    For example in 1986, a Pi-calculating program that Bailey wrote at NASA, using an algorithm due to Jonathan and Peter Borwein, detected some hardware problems in one of the original Cray-2 supercomputers that had escaped the manufacturer’s tests. Along this same line, some improved techniques for computing what is known as the fast Fourier transform on modern computer systems had their roots in efforts to accelerate computations of Pi. These improved techniques are now very widely employed in scientific and engineering applications. And of course, from a mathematical perspective it’s just plain fascinating to see the digits of Pi in action!

    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    第一次用linux登录madio,纪念一下
    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-8-19 23:57 , Processed in 0.362448 second(s), 54 queries .

    回顶部