- 在线时间
- 66 小时
- 最后登录
- 2016-6-7
- 注册时间
- 2011-12-30
- 听众数
- 5
- 收听数
- 0
- 能力
- 0 分
- 体力
- 1917 点
- 威望
- 0 点
- 阅读权限
- 50
- 积分
- 703
- 相册
- 0
- 日志
- 5
- 记录
- 0
- 帖子
- 247
- 主题
- 12
- 精华
- 0
- 分享
- 0
- 好友
- 12
升级   25.75% TA的每日心情 | 开心 2016-6-7 21:23 |
---|
签到天数: 196 天 [LV.7]常住居民III
 |
. l' f5 i0 R. s 素数判定式! u# U+ w- M" e$ I
海南省乐东县保显学校 陈泽辉
5 V q0 U9 {! N9 B1 D# a3 L! N: A& @2 A) f3 b4 `% c
若n、x、y为非0正自然数,有n≠2xy+x+y时,则数A=2n+1为素数。如n=1、2、3、5、6、8、9、11……等等时,均不属于正整数集合2xy+x+y,因此数A=2n+1即3、5、7、11、13、17、19……等等为素数。而n=4、7、10、12、13、16、17……等等时,属于正整数集合2xy+x+y,因此数A=2n+1即9、15、21、27、33、35……等等为奇合数。理论证明素数个数无限:因为全体非0自然数并非能用数集2xy+x+y表示,也就是说非0正整数集合包含数集2xy+x+y或说数集2xy+x+y属于非0正整数集合的子集,所以在非0正整数集合中,永远存在n≠2xy+x+y,因此素数A=2n+1永远有无限多个。
5 F4 o; T1 i" i0 o; s
1 }' \5 p1 I8 D/ M* R' e 孪生素数判定式7 ^# c2 d$ b' f- S0 T
若n、x、y为非0正自然数,有n≠6xy±(x±y)时,则孪生数6n±1为孪生素数。如n=1、2、3、5、7、10、12……等等时,均不属于正整数集合6xy±(x±y),因此孪生数6n±1即5和7、11和13、17和19、29和31、41和43、59和61、71和73……等等为孪生素数;而n=4、6、8、9、11、13、14……等等时,属于正整数集合6xy±(x±y),因此孪生数6n±1即23和25、35和37、47 和49、53和55、65和67、77和79、83和85……等等不是孪生素数对。理论证明孪生素数个数无限:因为数集6xy±(x±y)并非能表示完全非0自然数,也就是说非0正整数集合包含数集6xy±(x±y)或说数集6xy±(x±y)包含于非0正整数集合中,所以在非0正整数集合中,永远存在n≠6xy±(x±y),因此孪生素数对(6n±1)永远无限。: z" l" J, a- f0 Q# }! a2 H; O/ }$ Y
有了素数与孪生素数判别式,可以更好更快地找到更多更大的素数与孪生素数;有了孪生素数判定式,可以证明《哥德巴赫猜想》。(用孪生素数判定式还可以推导出判定梅森素数的普遍公式)1 a" ?6 K! M% u- m4 O1 h- P7 y
联系电话:13617578079
3 V* H) c; f* S/ F |
zan
|