QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 6339|回复: 0
打印 上一主题 下一主题

[其他资源] 【论文】基于健康特征提取和PSO_RBF神经网络的锂离子电池健康状态预测

[复制链接]
字体大小: 正常 放大

485

主题

5

听众

1564

积分

  • TA的每日心情

    2021-1-13 09:31
  • 签到天数: 8 天

    [LV.3]偶尔看看II

    跳转到指定楼层
    1#
    发表于 2021-1-1 09:10 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    针对电动汽车锂离子电池健康状态(State of Health,SOH)难以精确预测,以及现有预测模型复杂、计算量大的问题,本文提出了一种基于粒子群(Particle Swarm Optimization,PSO)算法优化径向基(Radial Basis Function,RBF)神经网络的电池健康状态预测方法.首先,通过循环寿命试验获取电池充放电过程中的时间向量和容量增量变化,提取与电池衰退相关的健康特征因子;其次,运用灰色关联度和主成分分析法对电池的老化特征参数进行了分析,以解决健康因子冗余或者不足问题;最后建立了PSO-RBF神经网络模型,实现电池健康状态估算.用实验得到的电池数据对提出的模型进行验证,并与单一Elman神经网络(Elman Neural Network, Elman NN)和径向基神经网络模型预测方法进行对比.结果表明:本文提出的方法能有效地预测电池SOH,最大误差小于2%,具有较好的稳定性和鲁棒性.
    # w+ J! |4 x( n4 \7 d+ I
    8 Y, J- [& b, v2 a

    基于健康特征提取和PSO_RBF神经网络的锂离子电池健康状态预测_陈峥.pdf

    4.67 MB, 下载次数: 0, 下载积分: 体力 -2 点

    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-7-19 10:20 , Processed in 0.503854 second(s), 52 queries .

    回顶部