|
"陛下,我们的假设中没有上帝!" --拉普拉斯 1799年的法兰西,灯碧辉煌的宫廷中,盛装的拿破仑嘴角挂着微笑,他当然有十足的理由值得自豪,不久前的雾月政变中他一跃便攫取了最高权柄,偌大的法兰西自此便匍匐在他的脚下。他随眼一瞥,参加这次盛宴的尽是王公将军,政府要员,巨董大亨,学界名流,全法兰西的精英都汇集于此,便微微点了点头。 这时一位高个绅士手捧两卷新书,缓步走到前排,毕恭毕敬地献给了拿破仑。众贵宾不免相视狐疑,他们自然都识得这位便是鼎鼎有名的大物理学家拉普拉斯,他与拿破仑的私人交谊非同泛泛,加之素来威望孚众,此时已升任内政部长。 有人不免暗笑他大不识趣,如此风光的场合,人人都是奉上奇珍异宝,这书呆子却寒碜至此,有人却深知拉普拉斯此人甚是圆滑世故,自大革命以来无数的腥风血雨伤不了他毫发,官倒是越做越大,他此般做作自是大有深意。 拿破仑接过赠书,一页页地翻了起来,宾客们纷纷放下酒杯,关注着他的脸色,拉普拉斯则恭顺地垂头立在一边。突然拿破仑重重一哼,道:"拉普拉斯,你新著的这本《天体力学》口口声声说能解决宇宙的一切谜题,可我前后翻了这许多页,你居然没有只字提到上帝?!" 周围的人无不耸动,拉普拉斯却陡然敛起一贯谦卑的笑容,昂起头肃然说道:"陛下,我的假设中并不需要上帝!" 纵观物理学千年以来的发展,对物理学真正最具信心的不是门类空前完善的今天,也不是经典物理成熟透顶的十九世纪末,而是拉普拉斯所处的时代。 其时牛顿逝世已近半个世纪,然而他指引的方向确是丝毫不差,这些年来物理学取得了空前的发展,神学的迷雾一点点的散去,牛顿力学的威力也一点点的显出,原先无数困惑难解的现象无不迎刃而解。如果说还有什么障碍的话,那便是数学上遇到了难题。 牛顿力学的概念固然是清晰明澈,但一遇到受力复杂的物体便需罗列诸多方程,求解极是困难,而且学过初等力学的人便知那套力学须得对每个物体作图解的受力分析,纵横交叉的矢量箭头更是大添繁乱,究其原因,还是牛顿力学在在数学上挖掘得尚不够深入。 随着微积分体系的逐步健全,分析已成为数学中新兴的第一手段,和代数,几何鼎足而立。大物理学家,数学家拉格朗日的《分析力学》横空出世,立时弥补了牛顿力学的缺憾。 拉格朗日是法国18世纪号称"三L"的三大科学家之首,剩下二位便是拉普拉斯和大数学家勒让德。他的父亲是一位很富有的商人,在拉格朗日童年的时候就不幸破产。多年之后拉格朗日提及此事的时候仍是大有感触,自称那是他一生最幸运的事情,要不然到今天法兰西只不过会多一个庸碌的商人而已。 《分析力学》一书着眼于更本质的物理量--能量,把虚位移原理,拉格朗日方程,最小作用原理贯穿在一起,利用变分法这一强大的数学工具把力学推向了新的高度。全书以拉丁文写就,遣词造句极富风度,全无干巴巴的说教,倒似点缀以公式和方程的诗篇。 拉格朗日于此书也极是自负,在序言中如是写到:"我们自牛顿时代以来力学的专著层出不穷,但我保证本书的见解是全新的,自此所有和力学相关的题目都可以遵循一整套有条不紊的步骤,这一点恐怕会令一些喜欢奇兵制胜的朋友所望,这里没有一副图形,也没有任何几何上的论证,在我看来,力学显然已经成了分析的一支。" 分析力学自是将纯数学引入物理的一个成功范例,而且解决了很多以前很难求解的问题。机械制造工业,建筑行业都在此基础上大大迈进了一步。但后世学者对分析力学却也颇有微词,它冲淡了物理学对事物本原的追寻,反而陷入了数学上无尽的形式变化,所有力学家无不以尽善尽美地解出方程为终极目标,百多年来力学再鲜有进展,这也是原因之一。 但分析力学中的变分法却无论在当时,还是后世都是大受推崇。变分法思想乃是起源于亘古以来的一种美学思想,即事间万物均是被最简单,最完美的天然规律所支配。 十七世纪大数学家费马在研究光的传播时提出过一条神秘的费马原理,不管在什么介质中运动,沿真实传播路径所需时间是最短的,依照该定理便可导出光的折射定理,这实际上已经开了变分法的先河。 牛顿还在世的时候,法国的伯努利曾悬赏解决著名的最速落线问题,题目的原话是这样的:"在垂直平面内有任意两点,一质点受地心引力的作用自较高点滑落到较低点,不计摩擦,问沿何种曲线运动时所需时间最短。"宝刀不老的牛顿仅花了一夜时间便找到了解决办法,而真正把变分法用于力学中的则是爱尔兰的大物理学家,数学家哈密顿。 哈密顿自小便受过极好的教育,5岁就开始学习各种外语,12岁的时候已经掌握了12门欧洲语言,当时人人都认为他将会成为第一流的语言学家。孰料13岁那一年他和美国另一位15岁的数学天才见面之后发生了戏剧般的变化,他获得了那位美国神童不可思议的数学天赋,而美国神童最终却成为一代语言学大师。 16岁那年哈密顿便指出了拉普拉斯的《天体力学》一书中的错误,令拉普拉斯大为惊叹。进入剑桥三一学院之后更是才华毕露,二十二岁那年就成为三一学院的天文学教授,人们从这位貌不惊人的爱尔兰人身上依稀看到了牛顿当年的风采。 力学在哈密顿手中又一次获得升华,他的哈密顿原理是力学中至精至简的形式,纷繁芜杂的牛顿方程被简要地用哈密顿正则方程所代替。 其中的H便是著名的哈密顿量,这在当年并未怎么引起十分的注意,直到两百年后新物理学的两大支柱相对论和量子力学出世之后,牛顿力学中的很多观念都被放弃,惟有哈密顿量成为两大支柱都扣得极紧的物理量,这一方面固然是哈密顿识见远卓,另一方面也说明正则方程实是牛顿方程的精髓所在,须知任何新理论都不是空中楼阁,而要向原有的理论借助一些最是根本的思想。 哈密顿不仅是一位物理学,数学大师,其人文素养也是首屈一指。法兰西文学院多次征文,此君都是榜上有名。这也与当时学界涉猎广博的风气相关,知识分子阶层相互交谈用法语,立论著书用拉丁语,其时的法国大革命方兴未艾,启蒙风气之胜,思想大家之多相比文艺复兴时代并不逊色,很多人身兼数学家,物理学家,哲学家于一身,但象哈密顿这般文笔高妙的人倒是不多,如象拉普拉斯一般冠以革命家,社会活动家,政府高级官员的头衔的任务更是罕见了。 拉普拉斯出身贫寒,他自小砺志自学,到二十一岁那年已经身手不凡,几篇涉及到数学,物理最新研究领域的论文引起了法兰西科学院的重视。但科学院当时守旧势力极重,象他这般既无背景,又年轻的人是很难进入的,拉普拉斯满怀希望地申请加入,谁知第一年申请科学院把职位给了比他年长十四岁的范德蒙,第二年又给了比他大十岁的库辛,他不免大发牢骚"科学院宁愿接受一个才能远逊于我的人!",心灰气沮之余便到一所军事院校教书,这却成为他一生的转折点,因为在那里他遇上了其时尚为一炮兵学员的拿破仑。 不过若说拉普拉斯的成名全拜拿破仑所赐却也太过冤枉了他。当拉普拉斯经过一番努力终于跻身法兰西科学院时,立刻显出了他的实力。拉普拉斯研究领域之广,论文数量之多,质量之高在全法国再无人能出其右,即便已经逝世的拉格朗日也是颇为不及,凭借如此辉煌的业绩很快便登上了院长的宝座。 拉普拉斯涉猎到分析力学,差分方法,偏微分的解法,概率论和人口论,热学和声学的诸多方向,但他最显著的成绩就是把物理学引入到天文学中。他最早根据牛顿力学的万有引力建立起摄动理论,并讨论了三体问题解的存在。 所谓三体问题就是空间三个物体在万有引力作用下的运动方程,这类看似浅显的问题真正解决起来却极是困难,拉普拉斯凭借深厚的数学功底,找到了一个特解,大约一百年后另一位数学物理大师彭加勒专门研究了多体问题(三个物体以上),他发现若是任有一个物体的坐标稍加变动,整个系统的运行轨道就变得全然不可捉摸,顺着这条线索走下去便有了今天盛极一时的混沌现象及非线形科学。 天体力学这个名词便是拉普拉斯最先提出来的,在他严密的推导之下所有的天体,诸如行星,月亮,彗星,木星、土星、天王星各卫星的轨道都是一目了然,甚至拉普拉斯开始了笔下推算未知天体的尝试。 一些行星的轨道和计算的轨道有所偏离,学者们首先想到的不是方程出了毛病,而一定是轨道外围还有一颗未被发现的行星在作祟,这也可见此时人们对牛顿力学的倚信程度已经到了无以复加的地步。尤其是1846年英国的亚当斯和法国的勒威耶同时发现的海王星更是有笔尖上的行星的美誉,牛顿力学再次显示出无坚不摧的威力。 如果说上个世纪物理学家还在为上帝的问题和神学家据理力争的话,到十九世纪则根本是不屑一顾,上帝的存在大可不必理会,世上还有什么问题解决不了的呢。漫漫长夜中伟人牛顿已经升起了明灯,沿着他指引的方向,我们自己在头脑里便可给出合乎理性的答案。大哲人伏尔泰的呼声道出了众人的心底话:"如果没有上帝,我们便造一个出来!" 拉普拉斯虽然在官场上碌碌畏缩,明哲保身,但一谈及物理学这一股自豪感却油然而生,即便面对威严的皇帝也是豪情不减。拉普拉斯的说法是只要能给我宇宙诞生初期的条件和边界的条件,叫上加上足够的数学知识,我甚至能计算出整个宇宙的演化历程,不管是过去,现在还是将来。 此言已颇显狂态,阿基米德也曾吹嘘若给他一个支点便能撬起整个地球,也不过是极言杠杆作用之大,谁也不会挺身一试,但拉普拉斯的狂言却赢得一片轰然叫好之声,有些持重之士纵使嘴上不说,心里也是暗暗称道,人人心中都是一般想法:纵使我们这一代人未必能够,后世的物理学家们的日子也大是轻松,甚至不须出什么才能特异之士,只要数学工具一朝改进,顺着牛顿的路走下去便终可修成正果,所需的不过是时间和经验而已。 今天的物理学家回想起来,拉普拉斯的言语虽然极是鼓动人心,却也太过狂妄,此后的两百年间数学固然没取得想象中的进展,牛顿力学却终究发现了不实之处,而且即便我们的计算能力空前强大,也不能预言出宇宙的每一个细节,这些都是二十世纪的量子力学出世之后人们才慢慢领悟到的,拉普拉斯纵使是牛顿再世,也决计想象不出后来居然还有如此惊人的波折。
热学的发展包括热力学和统计物理两部分,它一开始虽然不象力学一般从数学中演绎出一套完美严格的体系,但于生产发展,社会进步却起过重要的作用,从第一次科技革命的代表--蒸汽机便可见一斑。 早在1695年法国人丹尼斯?巴本就制造出世界上第一台活塞似蒸汽机,他的设计思想很是新颖,汽缸中加热产生蒸汽,推动活塞上升到顶端,然后汽缸降温,活塞又被推回,于是装置就运转起来。 此后的蒸汽机种类繁多,但究其原理也与此类似。作出重大改进的是英国的瓦特,他于1782年制出单动式蒸汽机,并随后改进为双冲程式,蒸汽机的效率大大提高,并被广泛运用于各行各业,从此瓦特的名字就和蒸汽机紧紧联在一起。 瓦特,巴本等人都是第一等的大发明家,工程师,却都算不上是物理学家。热学建立之初便和工程运用方面联系得极紧,这固与热学中不需要力学那般复杂的数学工具有关,但研究热学的物理学家们大多重视实验现象,忽视哲学的思辩也是一大失策,譬如荒谬的热质说就作为热学的根本前后统治达两百年之久便是明证。至于在如此脆弱的根基上居然演绎出很多成功的热学定理,甚至总结出震烁古今的第一哲学思想--能量守恒定律,却当真匪夷所思。 整个热力学是建立在三大定律的基础之上的,如同牛顿三定律是牛顿力学的核心一般。第一定律就是能量的转化和守恒定律,这不仅限于热学领域,而是贯穿于整个物理学中。最早用实验证明热学中的热量和力学中的功等效的是英国物理学家焦耳。 焦耳出生于曼彻斯特,原本是位酿酒师,后来在著名化学家道尔顿的引导下走上了科学的道路。他在实验方面颇有天赋,几乎是一点便会,一会便精,二十出头就在电学中观察到电流产生的热量和电流强度的平方、电阻成正比的焦耳定律而扬名一时,然而自此这位年青人就沉寂下去,因为他花了足足三十年的工夫才测定热功当量的数值,奠定了能量守恒的基础。 能量守恒定律意义的重要性在当时而言,其哲学上的意义远较物理为胜。哲学家尽可以欢天喜地地拿去引证自然界事物的运动形式总是不断转化的观点,而物理学家只不过简化了一些复杂问题的求解过程。 真正令人大开眼界的是二十世纪的相对论诞生之后,爱因斯坦著名的质能方程 显示出质量和能量的转换关系,原来各自独立的能量守恒和质量守恒也合二为一。此后数学中的群论引入物理学之后,寻找守恒定律便成了第一要务,今后物理学还会有什么进展,很大程度上取决于是否能找到类似能量,动量之类的守恒量。 热力学第一定律无情的击碎了"永动机"的梦想。人类自古以来就渴望制出一种不需要额外提供能量又能永远转动下去的机器,但一直也未成功,反倒弄出了无数闹剧。 最有名的是欧洲的一个人号称制出了永动机,其装置并不复杂,不过是一个轮轴上悬挂了几个金属球,偏偏这个轮轴当真一转起来就不休不停,而且每转一圈还可以从井中提出一小桶水来。稍具物理知识的人便可知此事绝不可能,但也一时看不出其作弊的手段。这个人口才了得,在他的鼓动之下,居然带着永动机游历整个欧洲,每到一国还受到王室的接见,甚至还曾取得专利。后来他的仆人间拌嘴才泄露了天机,原来永动机的下面有个暗箱,只须有人藏匿其中转动发条即可。 第一定律明确指出了能量是不能凭空产生的,但有些才智之士又突发奇想,第一定律不是指出能量和热量可以相互转换么,那好,我们可以从一个高温物体不断吸收出热量并转换成机械能做功,这不也是一种永动机么,何况于第一定律并不矛盾呀。 其实当蒸汽机不断完善的时候人们就发现出这一个问题,无论怎么润滑机件,减小摩擦,蒸汽机的效率提高到一定值之后就怎么也上不去了,换句话说高温物体释放的热量绝对不能完全转化成机械能,这倒不能简单地推诿于摩擦,即便是摩擦力为零的情况也是如此,解决这个问题就需要用到热力学第二定律。 著名的物理学家克劳修斯提出的第二定理的表述是:不可能从单一物体吸收热量并把热量完全转化为机械能,另一位物理学家开尔闻勋爵的说法更是简单明了:不能把热量从低温物体逆传到高温物体,后来证明这两种说法都是等同的。 随后克劳修斯便引入了熵的概念,从而第二定律又获得了第三种解释:熵增加原理,即在封闭的外部热量无法传入的情况下,体系的熵值只会朝增加的方向移动。 所谓熵值乃是表现体系的无序程度的物理量,熵值越大,体系便越是混乱离散。熵这个词在当今除了物理和化学等寥寥学科之外,很少再有人提及了,但在19世纪的欧洲的上层社会的交谈中,你若不装腔作势地拼出这个字音来会被人视为鄙陋的。 起因还在克劳修斯,他得出熵增加的结论之后马上就推广到宇宙空间,整个宇宙不也可视为一个封闭系统么,那么宇宙的前景是可想而知的,熵值无限增加,最后到一个极大值,此后宇宙各处的温度都等同了起来,便处于一种永恒的死寂状态。他写下这篇论文时的笔调很是忧郁,似乎宇宙的末日并不为远。 克劳修斯的文章震动了整个社会,当时西方各国的社会正处于上升的黄金阶段,机械大工业已初见端倪,粗大的烟囱林立城市,满载的航船游曳大洋,老百姓的生活日益富足,人人都正在想如何把此等天堂一般的日子承继下去,孰料一盆冷水突然迎面泼来。 末世的到来圣经里不是没有,那也只是触怒上帝的报复,再说那时人们已大多倾信于科学,于天主的警告未必放在心上,然而正是科学家作出这等惨淡的预言,不由得不信,一般小民未必会在意这世界的结局如何,但哲学家们却非要争出个是非不可,受其影响,那个时期的文学也是悲观主义盛行一时,无病呻吟的诗歌也处处可见,神学家又得意地站了出来"如何,末日终有到来之日,这可是上帝的惩罚,还不投入天主的怀抱,请求宽恕?" 实际上宇宙的热寂说本不足为信,第二定律简单地推广到整个宇宙空间未必适用,何况我们还无法说出宇宙的边界究竟是怎样的情况。至于那些耗散到太空去的热究竟到哪里去了,究竟又是怎样集结起来的,这期间牵涉到怎样的能量转化过程,当时的人们只能含混其词"上帝自有他的道理"。这须得到二十世纪的新宇宙学发展之后,才能给出答案。 热力学第三定理最简单的表述是:绝对零度可以无限接近,但永远都不能真正达到。我们知道,物理学家开尔文曾经制定过一套热力学温标,与摄氏温标和华氏温标不同的是,它规定的世界上的最低温度是绝对零度,换顺换算成摄氏温度是-273.16度。 第三定律是在对低温进行时由德国的物理化学家能斯脱提出的,沿着这条路走下去到二十世纪低温物理学便发展成物理学中门类最是庞大的一支--凝聚态物理,八十年代红极一时的超导也是系出此门。 热学的另一支统计力学走的与热力学全然不是一条路,它是建立在分子运动论和数学上一大分支概率论基础之上的。 分子学说自从古希腊的德谟克里特以来沉寂了千年之久,直到近世才被大化学家道尔顿从故纸堆中翻了出来,而概率论来历更是古怪,最初居然是大数学家傅立叶从赌场中获得的灵感。这样的两种理论结合在一起,又没有很强的实验来支撑,人们原来是不抱什么希望的。孰料天下尽多蹊跷之事,统计力学轻易就推导出热力学三大定律,而且前提只有一条:承认每个分子在各种不同的物理状态中是等几率分布的。 这样一来热力学给出的是宏观上的现象,统计力学解释的是微观上的机理,二者实是殊途同归。其实统计力学最大的意义并不在于把热学重新解释了一遍,而是第一次把概率论的观点引入了物理学中,这在二十世纪物理学的革命中起了极端重要的作用,到今天每个物理学家都能真切地认识到:我们这个世界是建立在概率基础上的。 电磁学是整个经典物理学辉煌到顶点的标志。早在古希腊时代人们认识到琥珀带电和磁石吸引铁钉的现象,但也仅仅到两百年以前才突然发现电和磁是如何紧密地联在一起的。 最早能把琥珀带电和天上的闪电想象成是一种物质的是美国人富兰克林,这在当时也算是了不起的创见。自古以来人们就对电闪雷鸣抱有恐惧的心理,牛顿力学虽然解释了很多现象,但对此却无能为力,因为这其中涉及到的不是引力的作用,而是另一种尚未知晓的力--电磁力。 富兰克林也是偶然注意到这一现象的,那一次在家中用一个存贮电荷的莱顿瓶做实验,一不小心莱顿瓶漏电,当场将他身旁的夫人击晕了过去,这只怕是历史上第一次人造电荷发生的事故。富兰克林赶忙将妻子扶起,心中却想,妻子倒地时浑身抽搐发青,倒似被雷电击中的一般,只怕雷电多少和这莱顿瓶中的电荷有关。 这富兰克林也是胆气豪壮之士,他专门找准了雷雨天放起风筝,金属丝线搭落下来,火光四溢,旁人见了无不骇然失色,他却一边拽着风筝疾跑一边哈哈大笑,"我找到雷电的成因了!" 当时研究电流的强度实在没有什么好的仪器,富兰克林干脆就把电流通到自己身上,如此强度就分成了三六九等,无感觉,麻木,抽搐,昏厥,再以上就觉察不到了,几次富兰克林都险被击毙。物理学家大都极富献身精神,但象他这般涉身犯险,视生命直同儿戏的倒也没几个,也正是在这些迹近拼命的实验下,电学的第一批数据建立起来了。 第一个认识到电荷平方反比律的是应该算是英国的大物理学家卡文迪许。他出身贵族豪门,照例卡文迪许这等身份的人或者出入官场,扬威域内,或者放浪形骸,寄情声色犬马之中,可是他生性古僻,平时连生人都不愿见到一个,生平最喜好的事情便是在家里作各种希奇古怪的实验。 卡文迪许是第一等的大物理学家,实验作得固然是精度极高,理论上的功底也是不弱,他在翻读牛顿的《原理》一书时看到牛顿的一个证明,一个小球悬吊在另一个空心球体之内,受到的引力为零,这完全是因为万有引力与距离平方成反比之故。卡文迪许看到这里,突然想到莱顿瓶的电荷可是只分布在表面,内部可是一点儿也没有,莫非电荷的作用力和引力作用全然相同,都是遵守平方反比的规律,这也未免太过巧合了吧? 此等联想乃是物理学中最是宝贵的直觉,在实验室中不分昼夜的埋头实验故是不易,呕心沥血地推导出复杂的公式也属难得,但终究是及不上这电花火石般的一刹那,自牛顿的万有引力发现以来最重要的一个猜想便这般诞生了。 当时的实验条件很是简陋,但卡文迪许经过极细心的检验和论证,指出电荷间作用力的形式如同: ,其中n在 之间,这是第一等的发现,但卡文迪许生性内向,所有的手稿都锁在柜中了事,根本无意发表。一直到1785年,法国物理学家库仑设计出扭称实验,验证了平方反比率,轰动了整个欧洲,但其精度尚还不及卡文迪许。 卡文迪许终身未婚,只有他侄子继承了一大笔财产和一大柜手稿。他一生除了购置实验仪器之外花费着实寥寥,他的侄子毕竟最通他心意,将此笔钱捐给剑桥大学彼得豪斯学院实验室,这个实验室就是后来名闻天下的卡文迪许实验室,人类在那里第一次揭开原子的秘密,前后在那里培养出诺贝尔奖金获得者共计二十六人。 不过卡文迪许的侄子本人不通物理,倒拿那一大堆手稿没有办法,直到他本人也逝世之后,手稿才流落出来,后世的物理学家读到之后才对卡文迪许的旷世才学又惊又佩。是他最早精确测定了万有引力的常数,是他最早提出了电荷间的作用力和距离平方成反比,是他在法拉第之先用实验演示了电容器的电容和填充的物质相关,早在欧姆定律公开发表的三十年前他就发现了导体两端的电势和流过的电流成正比。在化学上他甚至享有"化学家中的牛顿"的美誉,是他最早提出水是由氢氧两种元素组成的。 更让人不可思议的是所有这一切全部都是他一人完成的,连一个助手都没有,更别提创立什么学派了,他从来不与其他科学家交往,但英国科学界对他的尊敬是牛顿之后无人可比的。 |