QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 2482|回复: 0
打印 上一主题 下一主题

使用 statsmodels 进行多元线性回归

[复制链接]
字体大小: 正常 放大

1184

主题

4

听众

2916

积分

该用户从未签到

跳转到指定楼层
1#
发表于 2024-3-15 17:15 |只看该作者 |倒序浏览
|招呼Ta 关注Ta
statsmodels 是一个 Python 库,用于拟合统计模型、进行统计测试和探索数据。它提供了广泛的统计方法和模型,包括线性模型、广义线性模型、时间序列分析、非参数方法等。[size=0.85em]statsmodels 的优点之一是提供了丰富的结果摘要和统计诊断,有助于解释和理解模型的性能。( ?' G& A0 m5 Z
下面代码利用了 statsmodels 库中的 ols 函数来进行最小二乘拟合,然后输出了模型的摘要信息。让我解释一下:
; |7 ?9 B2 [+ o& n, J: }& a" X. k: p/ |& {
1.导入所需库:
  1.    import numpy as np
    \" A0 H) H' k- t7 {* K
  2.    import pandas as pd
    8 a# R& b) D7 |& @. h% u2 k5 y- U
  3.    from statsmodels.formula.api import ols
复制代码
2.定义源数据:
  1.    dic = {4 K5 M( t\" I$ d4 ~7 C
  2.        'x1': [7, 1, 11, 11, 7, 11, 3],2 K5 A& g; W( X7 v# h+ I
  3.        'x2': [26, 29, 56, 31, 52, 55, 71],
    ' }* N, S' [6 g
  4.        'y': [78.5, 74.3, 104.3, 87.6, 95.9, 109.2, 102.7],% K0 O0 D. D: D1 e# Q
  5.    }
复制代码
3.建立最小二乘拟合模型:
  1.    model = ols('y~x1+x2', dic).fit()
复制代码
使用 ols 函数指定了模型的公式 y~x1+x2,表示因变量 y 与自变量 x1 和 x2 之间的线性关系,并利用源数据 dic 进行了最小二乘拟合。
' b: ]9 v$ y7 |' h* t  n
3 Y. |3 o+ ?+ B, H6 G% B, c8 J4.输出模型摘要:
  1. model.summary()
复制代码
调用 summary() 方法输出了模型的摘要信息,包括参数估计、标准误差、置信区间、显著性检验、拟合优度等。
5 r, d# Y2 K" o  k通过这段代码,你可以方便地利用 statsmodels 进行统计模型的拟合和分析,并快速获取模型的详细摘要信息。
% i/ @( _+ s9 q0 ?8 O" u. m8 a1 _9 F7 x8 b: R
6 y  t5 h9 G$ H( X

12.mul_linear_regression_statsmodels.py

491 Bytes, 下载次数: 0, 下载积分: 体力 -2 点

售价: 2 点体力  [记录]  [购买]

zan
转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
您需要登录后才可以回帖 登录 | 注册地址

qq
收缩
  • 电话咨询

  • 04714969085
fastpost

关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

手机版|Archiver| |繁體中文 手机客户端  

蒙公网安备 15010502000194号

Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

GMT+8, 2025-12-28 16:54 , Processed in 0.453725 second(s), 55 queries .

回顶部