- 在线时间
- 463 小时
- 最后登录
- 2025-6-27
- 注册时间
- 2023-7-11
- 听众数
- 4
- 收听数
- 0
- 能力
- 0 分
- 体力
- 7344 点
- 威望
- 0 点
- 阅读权限
- 255
- 积分
- 2781
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 1156
- 主题
- 1171
- 精华
- 0
- 分享
- 0
- 好友
- 1
该用户从未签到
 |
KNN(K-Nearest Neighbors)是一种常用的基于实例的分类算法,它是一种简单而有效的监督学习方法。KNN算法的核心思想是:如果一个样本在特征空间中的k个最相似(即特征空间中最近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。
3 g9 G! F% g8 e' K. @+ b5 P
v3 @ h3 X: S# [7 a8 dKNN算法的功能主要包括以下几点:
) W% C% l( V3 f: v1 h
9 O$ P2 }5 [' I# z6 Z1. 分类:KNN算法可以用于分类问题,即将一个未知样本分到已知类别中的某一类。根据样本在特征空间中的k个最近邻居的类别,通过多数投票的方式确定未知样本的类别。
! e* m% W1 c% M- \+ Z6 e7 @5 Y4 v" r7 w4 D1 d
2. 回归:除了分类问题,KNN算法还可以应用于回归问题。在回归问题中,KNN算法通过对k个最近邻居的输出值进行加权平均来预测未知样本的输出值。5 m/ ]/ G C9 L0 o5 i; E T; u
# X. Z" s! U# X' D; E- x+ b5 Z3. 简单易懂:KNN算法简单直观,易于理解和实现。它不需要训练阶段,仅需要保存训练集数据,因此适用于小规模数据集。
7 N5 j3 V6 ?. |8 P! U3 J
% k6 n( S9 N+ p7 H* S4. 非参数化:KNN算法是一种非参数化方法,不对数据分布做出任何假设。这使得KNN算法在处理非线性、复杂数据集时表现较好。
. e. a& v0 D% t+ n& R$ v! d
0 T! \) k; K: c& s9 Y5. 鲁棒性:KNN算法对异常值和噪声数据具有一定的鲁棒性,因为它是基于邻近的样本进行决策的,而不是依赖整体数据的分布情况。
k' n0 I( w- m* G9 s1 ?# v; X, \8 s( _
总的来说,KNN算法是一种简单而强大的分类和回归算法,适用于小规模数据集和非线性问题。它具有直观的思想和良好的鲁棒性,是机器学习领域中常用的算法之一。
D0 A' E. K# {
& S, {& V, U+ P9 _" Y* b- _( j1 K2 [. g7 R* W: ~
4 x6 H+ l! S: R' u
|
-
-
KNN.m
1.29 KB, 下载次数: 1, 下载积分: 体力 -2 点
售价: 2 点体力 [记录]
zan
|