QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 1901|回复: 0
打印 上一主题 下一主题

基于Fisher算法的分类

[复制链接]
字体大小: 正常 放大

1175

主题

4

听众

2848

积分

该用户从未签到

跳转到指定楼层
1#
发表于 2024-5-22 09:56 |只看该作者 |倒序浏览
|招呼Ta 关注Ta
Fisher算法,也称为Fisher判别分析(Fisher Discriminant Analysis)或者线性判别分析(Linear Discriminant Analysis,LDA),是一种经典的统计分类方法,旨在找到一个线性组合,使不同类别的样本在这个线性组合下投影后尽可能分开。* m, }9 w1 l7 ]$ s0 z

0 R% i, i+ f2 HFisher算法的思想是通过最大化类间距离和最小化类内距离的方式来找到一个最佳的投影方向(即判别标准),使得不同类别的数据在投影后尽可能分开。具体来说,Fisher算法将数据集映射到一个维度更低的空间,以实现分类的目的。
- x/ H/ z& g1 V* {6 p* E4 S" p* D- R( ]8 v3 F) C4 }& D' c+ _
Fisher算法的步骤包括:
# Y; P9 ^9 Q/ |0 b$ r1. 计算每个类别的均值向量(样本均值)。: V+ }) _; O4 _, ^$ D) ^2 c
2. 计算类内散布矩阵(每个类别内样本的协方差矩阵)。2 O, v+ N7 J5 S; N
3. 计算类间散布矩阵(所有类别的均值向量差的协方差矩阵)。
" A! W1 R# E# d" t# }4. 通过求解广义特征值问题,得到最佳投影方向(判别标准)。
: C* h) w! B( B/ @8 _- U& {
3 c0 [/ J9 X4 W3 P) B通过Fisher算法得到的投影方向,可以用于分类任务。在进行分类时,可以根据样本在该投影方向上的投影值,进行类别判别。; Q' s. q/ \: W. v

& D) w% |0 N& l, W; A0 BFisher算法在模式识别和机器学习领域应用广泛,尤其适合于线性可分的场景。它能有效地减少数据的维度,保留最具判别性的信息,提高分类的准确性。( \: L  [' O) F( Q/ E0 J% i: k
6 A5 U$ w6 N8 o$ M8 o/ K- @
# b3 L/ x$ X8 `  L

) N6 Z& E0 Z; i0 b
4 u4 o: Y( I1 b: m/ m0 ?2 \3 A. [

Fisher.m

1.68 KB, 下载次数: 0, 下载积分: 体力 -2 点

售价: 2 点体力  [记录]  [购买]

zan
转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
您需要登录后才可以回帖 登录 | 注册地址

qq
收缩
  • 电话咨询

  • 04714969085
fastpost

关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

手机版|Archiver| |繁體中文 手机客户端  

蒙公网安备 15010502000194号

Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

GMT+8, 2025-8-3 14:33 , Processed in 0.261255 second(s), 55 queries .

回顶部