Group " r5 }% h) j9 J: h: U
A group is defined as a finite or infinite set of Operands' e6 H G- C K
(called ``elements'') , , , ... that may be combined or ``multiplied'' via a Binary Operator % b% w4 q4 `- P( U" {* ?0 ^( Q to form well-defined products and which furthermore satisfy the following conditions: ( ^) {- E9 Z A0 y# B3 s4 T' g0 |1. Closure: If and are two elements in , then the product is also in . # ^" l) \7 N9 l3 t; \; {: w2. Associativity: The defined multiplication is associative, i.e., for all , . 5 _6 E9 n* Y/ `; b8 _$ m+ d3. Identity: There is an Identity Element 4 a. D! X2 V: P% ^; X2 i2 M( b; C (a.k.a. , , or ) such that for every element . - y( A7 L7 @$ A0 W4. Inverse: There must be an inverse or reciprocal of each element. Therefore, the set must contain an element such that for each element of . 6 O1 ?# y" B V9 O0 qA group is therefore a Monoid 4 ? ^! M( v. ^2 w+ ? for which every element is invertible. A group must contain at least one element. / s- D$ J. z' F% [5 R F+ v0 J ' q# d0 n' n& B/ E4 \
The study of groups is known as Group Theory / Z6 S+ q7 A( h1 F. If there are a finite number of elements, the group is called a Finite Group' R% X& z) L9 X7 p, ^
and the number of elements is called the Order ! ?4 T" T: i. n/ j$ W of the group. , J. l& ^' A' {0 b' K * d# S8 J3 k# D( m$ J# h# w3 G. `
Since each element , , , ..., , and is a member of the group, group property 1 requires that the product 6 ~, @( s$ \% o) T0 m9 [
1 ^* ?& z1 _ N( r- Z- r
(1)# @. ~6 q- u$ P2 b+ g k( H
# ^# A7 A/ z" O) o M1 Y8 m 5 ?' q, T$ |( M$ q& D , C' G5 f+ i* v% h- G. Z# I; D. emust also be a member. Now apply to , 9 U, l) v1 b4 \9 ^. U+ Z9 p 6 ? r5 m! J: I* |, E: x
) B5 H. M. M% V5 v
(2) 0 K* j! ^0 y: Y$ l
+ Y/ ^. H; S4 W, }5 Q1 `6 Q% a# r, @7 q1 O6 A2 w" ^
% @* p- i0 ?7 W3 a4 s3 m7 a) Z! Y6 k
But ! Z \; V4 y9 X% s
9 y S7 D) ]6 A8 m2 N5 R# O
* ?9 l4 L e- r
/ B( C$ G, C* V1 F9 v) n0 G" i. F
/ | H7 K% |6 t+ Y! z4 l" f
1 B6 q+ H R+ ]+ H+ c }
(3)# |3 \0 p0 `9 h: Y! x7 p. D0 Z
so & Q6 A' a, B" p$ Z- D% S
7 z4 O' a. n6 d
(4) A6 i0 K8 ~5 Z8 B2 Y3 Y2 K
' _3 M! s9 Z. w5 E: q/ h) ?$ l% G' t+ l8 ~1 \
* e# ^, s0 U7 J: Y# c, }
which means that 1 }2 D: O J, e: [& Q4 A8 \
0 }5 {! N5 C: R
(5)9 M0 c4 t5 C- P3 H! Q1 H3 ]& i8 c
5 N3 @, p. R. i8 c' @* B( s6 a- p. x; o, m, c, h
5 v, X! d6 i; C2 B- ?
and ) z0 M ?' _0 B& M5 }2 s