好心人过来看下,版主帮帮忙
syms x t=[5 10 15 20 30 45 60 90 120]; p=[1;2;3;5;10;20;50;100]; i=[1.306 1.036 0.880 0.723 0.564 0.435 0.356 0.262 0.209 1.714 1.356 1.127 0.960 0.749 0.570 0.470 0.357 0.291 1.952 1.544 1.272 1.097 0.856 0.650 0.536 0.413 0.338 2.253 1.780 1.454 1.270 0.992 0.749 0.620 0.483 0.398 2.660 2.101 1.701 1.504 1.177 0.885 0.733 0.579 0.480 3.068 2.422 1.949 1.739 1.361 1.021 0.847 0.674 0.561 3.607 2.846 2.276 2.049 1.605 1.200 0.997 0.800 0.669 4.014 3.166 2.523 2.284 1.789 1.336 1.110 0.896 0.750]; for m=1:8 for n=1:9 F(m,n)=(x(1).*(1+x(2).*log(p(m,1)))/(t(1,n)+x(3)).^x(4)-i(m,n)).^2; end end Q=sum(sum(F)) 这个x应该怎么定义才行啊? 要得到的是下面的Q 能帮我看下吗 Q=(x(1)*(1+2473854946935173/2251799813685248*x(2))/((60+x(3))^x(4))-67/125)^2+(x(1)*(1+2473854946935173/2251799813685248*x(2))/((90+x(3))^x(4))-413/1000)^2+(x(1)*(1+2473854946935173/2251799813685248*x(2))/((120+x(3))^x(4))-169/500)^2+(x(1)*(1+7248263982714163/4503599627370496*x(2))/((5+x(3))^x(4))-2253/1000)^2+(x(1)*(1+7248263982714163/4503599627370496*x(2))/((10+x(3))^x(4))-89/50)^2+(x(1)*(1+7248263982714163/4503599627370496*x(2))/((15+x(3))^x(4))-727/500)^2+(x(1)*(1+7248263982714163/4503599627370496*x(2))/((20+x(3))^x(4))-127/100)^2+(x(1)*(1+2473854946935173/2251799813685248*x(2))/((5+x(3))^x(4))-244/125)^2+(x(1)*(1+2592480341699211/562949953421312*x(2))/((15+x(3))^x(4))-2523/1000)^2+(x(1)*(1+2592480341699211/562949953421312*x(2))/((5+x(3))^x(4))-2007/500)^2+(x(1)*(1+2592480341699211/562949953421312*x(2))/((10+x(3))^x(4))-1583/500)^2+(x(1)*(1+2592480341699211/562949953421312*x(2))/((120+x(3))^x(4))-3/4)^2+(x(1)*(1+2592480341699211/562949953421312*x(2))/((60+x(3))^x(4))-111/100)^2+(x(1)*(1+2592480341699211/562949953421312*x(2))/((90+x(3))^x(4))-112/125)^2+(x(1)*(1+2592480341699211/562949953421312*x(2))/((45+x(3))^x(4))-167/125)^2+(x(1)*(1+2473854946935173/2251799813685248*x(2))/((10+x(3))^x(4))-193/125)^2+(x(1)*(1+2473854946935173/2251799813685248*x(2))/((15+x(3))^x(4))-159/125)^2+(x(1)*(1+2473854946935173/2251799813685248*x(2))/((20+x(3))^x(4))-1097/1000)^2+(x(1)*(1+2473854946935173/2251799813685248*x(2))/((30+x(3))^x(4))-107/125)^2+(x(1)*(1+2473854946935173/2251799813685248*x(2))/((45+x(3))^x(4))-13/20)^2+(x(1)*(1+2592480341699211/562949953421312*x(2))/((20+x(3))^x(4))-571/250)^2+(x(1)*(1+2592480341699211/562949953421312*x(2))/((30+x(3))^x(4))-1789/1000)^2+(x(1)*(1+6243314768165359/9007199254740992*x(2))/((5+x(3))^x(4))-857/500)^2+(x(1)/((5+x(3))^x(4))-653/500)^2+(x(1)/((10+x(3))^x(4))-259/250)^2+(x(1)/((15+x(3))^x(4))-22/25)^2+(x(1)/((20+x(3))^x(4))-723/1000)^2+(x(1)*(1+6243314768165359/9007199254740992*x(2))/((30+x(3))^x(4))-749/1000)^2+(x(1)/((30+x(3))^x(4))-141/250)^2+(x(1)/((45+x(3))^x(4))-87/200)^2+(x(1)*(1+6243314768165359/9007199254740992*x(2))/((20+x(3))^x(4))-24/25)^2+(x(1)/((60+x(3))^x(4))-89/250)^2+(x(1)/((90+x(3))^x(4))-131/500)^2+(x(1)*(1+6243314768165359/9007199254740992*x(2))/((15+x(3))^x(4))-1127/1000)^2+(x(1)/((120+x(3))^x(4))-209/1000)^2+(x(1)*(1+6243314768165359/9007199254740992*x(2))/((10+x(3))^x(4))-339/250)^2+(x(1)*(1+6243314768165359/9007199254740992*x(2))/((45+x(3))^x(4))-57/100)^2+(x(1)*(1+6243314768165359/9007199254740992*x(2))/((120+x(3))^x(4))-291/1000)^2+(x(1)*(1+6243314768165359/9007199254740992*x(2))/((90+x(3))^x(4))-357/1000)^2+(x(1)*(1+6243314768165359/9007199254740992*x(2))/((60+x(3))^x(4))-47/100)^2+(x(1)*(1+7248263982714163/4503599627370496*x(2))/((30+x(3))^x(4))-124/125)^2+(x(1)*(1+7248263982714163/4503599627370496*x(2))/((45+x(3))^x(4))-749/1000)^2+(x(1)*(1+7248263982714163/4503599627370496*x(2))/((60+x(3))^x(4))-31/50)^2+(x(1)*(1+7248263982714163/4503599627370496*x(2))/((90+x(3))^x(4))-483/1000)^2+(x(1)*(1+7248263982714163/4503599627370496*x(2))/((120+x(3))^x(4))-199/500)^2+(x(1)*(1+2592480341699211/1125899906842624*x(2))/((5+x(3))^x(4))-133/50)^2+(x(1)*(1+2592480341699211/1125899906842624*x(2))/((10+x(3))^x(4))-2101/1000)^2+(x(1)*(1+2592480341699211/1125899906842624*x(2))/((15+x(3))^x(4))-1701/1000)^2+(x(1)*(1+2592480341699211/1125899906842624*x(2))/((20+x(3))^x(4))-188/125)^2+(x(1)*(1+2592480341699211/1125899906842624*x(2))/((30+x(3))^x(4))-1177/1000)^2+(x(1)*(1+2592480341699211/1125899906842624*x(2))/((45+x(3))^x(4))-177/200)^2+(x(1)*(1+2592480341699211/1125899906842624*x(2))/((60+x(3))^x(4))-733/1000)^2+(x(1)*(1+2592480341699211/1125899906842624*x(2))/((90+x(3))^x(4))-579/1000)^2+(x(1)*(1+6745789375439761/2251799813685248*x(2))/((5+x(3))^x(4))-767/250)^2+(x(1)*(1+6745789375439761/2251799813685248*x(2))/((10+x(3))^x(4))-1211/500)^2+(x(1)*(1+6745789375439761/2251799813685248*x(2))/((15+x(3))^x(4))-1949/1000)^2+(x(1)*(1+6745789375439761/2251799813685248*x(2))/((20+x(3))^x(4))-1739/1000)^2+(x(1)*(1+6745789375439761/2251799813685248*x(2))/((30+x(3))^x(4))-1361/1000)^2+(x(1)*(1+6745789375439761/2251799813685248*x(2))/((45+x(3))^x(4))-1021/1000)^2+(x(1)*(1+6745789375439761/2251799813685248*x(2))/((60+x(3))^x(4))-847/1000)^2+(x(1)*(1+6745789375439761/2251799813685248*x(2))/((90+x(3))^x(4))-337/500)^2+(x(1)*(1+6745789375439761/2251799813685248*x(2))/((120+x(3))^x(4))-561/1000)^2+(x(1)*(1+8809092674755503/2251799813685248*x(2))/((5+x(3))^x(4))-3607/1000)^2+(x(1)*(1+8809092674755503/2251799813685248*x(2))/((10+x(3))^x(4))-1423/500)^2+(x(1)*(1+8809092674755503/2251799813685248*x(2))/((15+x(3))^x(4))-569/250)^2+(x(1)*(1+8809092674755503/2251799813685248*x(2))/((20+x(3))^x(4))-2049/1000)^2+(x(1)*(1+8809092674755503/2251799813685248*x(2))/((30+x(3))^x(4))-321/200)^2+(x(1)*(1+8809092674755503/2251799813685248*x(2))/((45+x(3))^x(4))-6/5)^2+(x(1)*(1+8809092674755503/2251799813685248*x(2))/((60+x(3))^x(4))-997/1000)^2+(x(1)*(1+8809092674755503/2251799813685248*x(2))/((90+x(3))^x(4))-4/5)^2+(x(1)*(1+8809092674755503/2251799813685248*x(2))/((120+x(3))^x(4))-669/1000)^2+(x(1)*(1+2592480341699211/1125899906842624*x(2))/((120+x(3))^x(4))-12/25)^2; |