* T' F' t, i" J# C * [8 h, B( ]/ m菲立克斯·克莱因 $ `/ |) [2 J- b! ~- n( @. a ; k6 t2 R* e, F如果我们观察克莱因瓶的图片,有一点似乎令人困惑--克莱因瓶的瓶颈和瓶身是相交的,换句话说,瓶颈上的某些点和瓶壁上的某些点占据了三维空间中的同一个位置。但是事实却非如此。事实是:克莱因瓶是一个在四维空间中才可能真正表现出来的曲面,如果我们一定要把它表现在我们生活的三维空间中,我们只好将就点,只好把它表现得似乎是自己和自己相交一样。事实上,克莱因瓶的瓶颈是穿过了第四维空间再和瓶底圈连起来的,并不穿过瓶壁。这是怎么回事呢? , ^; d5 e) H8 A7 V5 t1 j# H8 c) ~8 n2 K3 W6 t+ L
我们用扭节来打比方。看底下这个图形,如果我们把它看作平面 上的曲线的话,那么它似乎自身相交,再一看似乎又断成了三截。但其实很容易明白,这个图形其实是三维空间中的曲线,它并不和自己相交,而且是连续不断的一条曲线。在平面上一条曲线自然做不到这样,但是如果有第三维的话,它就可以穿过第三维来避开和自己相交。只是因为我们要把它画在二维平面上时,只好将就一点,把它画成相交或者断裂了的样子。克莱因瓶也一样,这是一个事实上处于四维空间中的曲面。在我们这个三维空间中,即使是最高明的能工巧匠,也不得不把它做成自身相交的模样;就好象最高明的画家,在纸上画扭结的时候也不得不把它们画成自身相交的模样。题图就是一个用玻璃 ) M( D; N8 x5 O6 a吹制的克莱因瓶。. m8 t, b" v$ h
' P$ b. z! h q0 \7 @0 A 大家大概都知道莫比乌斯带。你可以把一条纸带的一段扭180度,再和另一端粘起来来得到一条莫比乌斯带的模型。这也是一个只有一 莫比乌斯带个面的曲面,但是和球面、轮胎面和克莱因瓶不同的是,它有边(注意,它只有一条边)。如果我们把两条莫比乌斯带沿着它们唯一的边粘合起来,你就得到了一个克莱因瓶(当然不要忘了,我们必须在四维空间中才能真正有可能完成这个粘合,否则的话就不得不把纸撕破一点)。同样地,如果把一个克莱因瓶适当地剪开来,我们就能得到两条莫比乌斯带 除了我们上面看到的克莱因瓶的模样,还有一种不太为人所知的"8字形"克莱因瓶。它看起来和上面的曲面完全不同,但是在四维空间中它们其实就是同一个曲面--克莱因瓶。