QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 4420|回复: 6
打印 上一主题 下一主题

数字的奇妙:素数

[复制链接]
字体大小: 正常 放大
clanswer 实名认证       

39

主题

6

听众

5598

积分

TZB狙击手

升级  11.96%

  • TA的每日心情
    奋斗
    2015-10-16 12:37
  • 签到天数: 28 天

    [LV.4]偶尔看看III

    自我介绍
    香茗一壶,斟满了心田,溢过了心坎,茗香遍体……涛声一片,传遍了脑海,浸湿了耳畔,涛溅全身……

    邮箱绑定达人 新人进步奖 最具活力勋章 发帖功臣 原创写作奖 元老勋章

    群组东北三省联盟

    群组Matlab讨论组

    群组数学建模

    群组LINGO

    群组数学建模保研联盟

    跳转到指定楼层
    1#
    发表于 2010-4-13 11:41 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta |邮箱已经成功绑定
    本帖最后由 clanswer 于 2010-4-13 11:43 编辑 5 a- ]; v1 Q5 M1 J  o3 P

    , U# P, Q! y' V以下是目录,如果觉得合你胃口,可以在后面直接下载附件。
    Entries A to Z.
    $ o% K! s. z2 rabc conjecture. % A1 u- m. X! y
    abundant number. ; A% [, W/ c0 i% T, E6 O3 v3 c9 A
    AKS algorithm for primality testing. 9 ^; o, Q& J& k/ ]6 w  }" T6 E
    aliquot sequences (sociable chains).
    4 l! V+ N6 x2 S0 Kalmost-primes.
    6 A. h/ U: z' d$ L* F$ m5 L0 Ramicable numbers.
    ) L3 e! h6 `5 U! Pamicable curiosities. # l& s: |% q7 e& L
    Andrica’s conjecture. 3 o0 \' z2 k$ O$ f
    arithmetic progressions, of primes. $ x) g. v% ^% b
    Aurifeuillian factorization. % T7 n- Y( j5 b. R& t
    average prime. ) @1 Q, _( U/ ]) K9 B3 t9 p; j3 j
    Bang’s theorem.
    ) l' t/ }  d' N% iBateman’s conjecture.
    ! b, ?. V; m* b6 {0 k8 z- }Beal’s conjecture, and prize.
    5 b+ C, D3 H" W/ F% \Benford’s law.
    ! U& `/ X9 |$ A# g9 IBernoulli numbers.
    7 b2 {2 @9 |8 L2 ^7 W! J- eBernoulli number curiosities. + C* g1 O. H+ c7 j
    Bertrand’s postulate.
    - c/ O8 g8 d0 [9 \0 Q. E7 d: oBonse’s inequality. 6 q( R6 G( h. V% `) T7 d
    Brier numbers.
    / _% [, X% M4 m1 _* ]" M+ |$ |/ ~Brocard’s conjecture. $ g& b5 L' i" X: _+ v. r) l# |. L
    Brun’s constant.
    7 @( Q  G" w4 x$ iBuss’s function. 4 q9 E1 \: |1 y3 E$ n# z# {4 C2 j
    Carmichael numbers. / v: C; f; L7 l1 v
    Catalan’s conjecture. % ?2 I& B" b, o$ ]
    Catalan’s Mersenne conjecture.
    4 @3 p' |! b! ]5 k6 kChampernowne’s constant.
      ]% x9 Y1 ~9 Q4 [- U1 Z5 Mchampion numbers.
    % O1 A+ n" ?' S# R- sChinese remainder theorem.
    ; ]0 s: x/ \$ a% K! Ncicadas and prime periods. # J) a2 h6 X9 x- d
    circle, prime.
    . N5 q! `1 m8 Ecircular prime.
    7 Z! i; J& z% l+ a' G6 J+ z  @Clay prizes, the.
    1 H* J! [' T" V7 f8 ?" M: ~& gcompositorial. + n. z* j7 l, Z! |9 q0 T
    concatenation of primes.
    ! W! G5 m* w, Y, Z3 t' B. T& `9 bconjectures.
    % G  e' W' T, Lconsecutive integer sequence.
    0 y- Q; z; _4 U2 aconsecutive numbers. ( B8 ^. C% w4 X& R/ x4 a+ z  K
    consecutive primes, sums of.
    6 W2 f6 `. q- g# IConway’s prime-producing machine.
    7 X4 |. i+ {+ P/ |, b) {cousin primes.
    9 \9 M( O7 s. {/ c0 K; sCullen primes. 9 y8 a6 o5 d* M" l% \# S3 o( _9 q
    Cunningham project. * P/ v' F' q2 W! d: a) j; y0 e& }% U
    Cunningham chains. ; Q6 M- ^3 R, b8 _7 o
    decimals, recurring (periodic). $ G7 D6 ~$ W4 E8 Y' s0 H
    the period of 1/13. 9 k' B/ H7 t! o& H
    cyclic numbers.
    $ p( V$ p- K' M) [/ x+ }Artin’s conjecture. - y4 Q6 b. D: f3 s+ m' h* B- M
    the repunit connection.
    : n/ T- `5 B5 k2 nmagic squares. ( d  X6 c; I+ K
    deficient number.
    1 ]- r( S& {: J" kdeletable and truncatable primes. . L( U2 P! o) H; i. B; `
    Demlo numbers. # h4 a) o/ @# X7 V! t- [9 {' C! o
    descriptive primes.
    ' f' c* E1 s0 {% T  xDickson’s conjecture.
    + Y/ b- [8 Z% o) rdigit properties.
    ) F; U8 s: e4 U, ~9 Q5 _Diophantus (c. AD 200; d. 284). 7 |' J( f/ n$ W) O9 n$ Y
    Dirichlet’s theorem and primes in arithmetic series. 3 e3 a5 }2 ^" P/ e0 W9 \+ R7 d
    primes in polynomials. 8 s/ i1 K3 _8 ~; S$ p& x( a
    distributed computing.
    5 X  }. @; T" [/ s% O$ W+ wdivisibility tests.
    . Z0 l+ {$ z+ T7 X4 Q/ v* J; m$ edivisors (factors). $ `8 k" X1 Z7 z1 Y
    how many divisors? how big is d(n)? 7 f3 y- K2 b# {. m
    record number of divisors.
    - q6 X% r/ A1 [/ A. f; L( lcuriosities of d(n).
    0 ?4 n! h! Z5 P5 Sdivisors and congruences. $ B6 ?2 j  F* R) H
    the sum of divisors function.
    9 v" }1 y" b% D) [- U  z, cthe size of σ(n). 8 v0 w" P- V4 k& r' [
    a recursive formula. : ~3 K4 |( W# Y
    divisors and partitions. 8 I' [8 y; t- p8 S+ x4 o
    curiosities of σ(n). 9 F5 k2 e8 e: r
    prime factors. , k7 [' E3 r2 u2 |2 k* n* A8 W
    divisor curiosities. 6 D# c3 u# m' {. t* ?: v6 Y7 {
    economical numbers. 4 i0 ?' T) Q3 r' w$ u: |1 R
    Electronic Frontier Foundation.
    4 N/ I+ D# A8 celliptic curve primality proving. + s" A% T1 c6 ~3 \4 x4 E- G
    emirp. % l" i2 T2 A4 y# h" D
    Eratosthenes of Cyrene, the sieve of.
    4 U0 ~4 I* L( }1 q) R2 ~8 ^0 MErd?s, Paul (1913–1996). ' J6 Q! V: T# r  ^
    his collaborators and Erd?s numbers.
    / f4 L/ F* U0 ?4 K, i7 Merrors. # J/ F+ e9 p( i( l1 E/ Q
    Euclid (c. 330–270 BC). 8 S3 m& j+ k: b4 D
    unique factorization.
    , p. P7 Y2 T# q; U5 Y% r&Radic;2 is irrational. , P8 a% X8 Y" `. W2 y. Q
    Euclid and the infinity of primes. 1 E0 u9 {% P! J0 X+ u4 Y
    consecutive composite numbers. 9 C2 W8 f* \; M8 s+ C
    primes of the form 4n +3. 7 t) O" h  e2 \) x  O' ^
    a recursive sequence. $ i2 |0 j. s( X, n6 g& P
    Euclid and the first perfect number.
    , z7 i6 R' j' Z7 jEuclidean algorithm.
    9 f8 l: z) T& \$ g: x- w0 [Euler, Leonhard (1707–1783). - n0 r: A" y0 i+ E
    Euler’s convenient numbers.
    & m5 F. s3 L( N1 Y# h4 fthe Basel problem.
    : U4 `# v$ z: {) i$ jEuler’s constant. / C, s: l! d: A1 H/ s
    Euler and the reciprocals of the primes.
    " n# h/ p$ I" e- zEuler’s totient (phi) function. " H# `, i2 c% I8 p( R7 t
    Carmichael’s totient function conjecture.
    3 W- O; I& d( X0 A: Qcuriosities of φ(n).
    $ \9 @* L3 |; n& R% d: OEuler’s quadratic. ; ]) ~% }, ?* r
    the Lucky Numbers of Euler. ' r, M( o# r7 t# Q! J! c
    factorial.
    6 m5 `  Y6 Z0 |1 d, F# sfactors of factorials.
    1 F' `& Q  w1 C: D+ @; r5 K; f4 {factorial primes.
    - J: Z7 G0 c' q0 H  [factorial sums.
    * b8 C; ]7 ?/ n/ V/ g# kfactorials, double, triple . . . . $ ]' |0 m( u6 g  Q
    factorization, methods of.
    + U' F1 ?5 z& S4 Y2 I9 Xfactors of particular forms. 9 L; E6 ~$ E( g  q+ l: ^( Z
    Fermat’s algorithm. 6 A4 B' g8 ~" T- M4 v3 G( C
    Legendre’s method.
    . U' S8 `. _) h! M! r  rcongruences and factorization.   j! }* I  r! I2 F! k
    how difficult is it to factor large numbers? % r1 G% [1 A5 h. T% i
    quantum computation. 9 h7 g+ c, |6 |- {( _, `' U
    Feit-Thompson conjecture.
    % i  Z  }9 w; y" w4 i$ M2 qFermat, Pierre de (1607–1665).
    + B: [/ H9 i. UFermat’s Little Theorem. ; k0 H5 ]8 o  \( z3 m( S
    Fermat quotient.
    + H1 X$ ?7 |1 o' ^: lFermat and primes of the form x<sup>2</sup> + y<sup>2</sup>.
    9 I5 |, @/ I0 s) BFermat’s conjecture, Fermat numbers, and Fermat primes.
    * b. G5 K. f6 N0 }: mFermat factorization, from F<sub>5</sub> to F<sub>30</sub>.
    6 ~" }, n7 t. dGeneralized Fermat numbers.
    / N/ H7 K+ Q& s% y  N1 d" EFermat’s Last Theorem. 5 _, z7 p6 X) ?2 O* h; v
    the first case of Fermat’s Last Theorem. ( V3 E8 k; A& J( R
    Wall-Sun-Sun primes.
    , P) D* Z- |. w) L0 u6 B1 jFermat-Catalan equation and conjecture. + D, B, E$ [- K
    Fibonacci numbers. - e0 g: n% N4 [$ u
    divisibility properties. . d4 s. u" l! o1 K8 f
    Fibonacci curiosities.
    8 j9 ]: T  I! r9 @édouard Lucas and the Fibonacci numbers.
    + G& P; D) |! _1 f7 J6 W- eFibonacci composite sequences. 8 ^( }$ F% `0 R) ^% C9 ]4 U
    formulae for primes.
    ! b5 O4 O' P, `Fortunate numbers and Fortune’s conjecture.
    ; s+ F! _) |0 d1 \, Ggaps between primes and composite runs.
    $ P5 F9 E( ?1 a, b- Y. [! f6 a+ B" d$ WGauss, Johann Carl Friedrich (1777–1855).
    $ ^& q. I  O+ a# W! _0 JGauss and the distribution of primes.
    ( {$ a! t8 Q7 x8 fGaussian primes.
    " w; G( O+ P. W5 eGauss’s circle problem.
    3 r/ z+ i2 A4 kGilbreath’s conjecture. # A0 o* c! A7 ~, n1 u0 y  m5 i% [
    GIMPS—Great Internet Mersenne Prime Search. * ?, F/ {( [' T$ F9 n
    Giuga’s conjecture.
    / U8 C2 n' m- I# G7 C) P) uGiuga numbers. 0 I. c1 a. [+ l# {: p6 a
    Goldbach’s conjecture. - ^! n# D& L/ r% C! R* K% j) D
    good primes.
    & @3 ^# h9 s, }Grimm’s problem. + T/ f; i* S- ~2 y9 R9 _+ a
    Hardy, G. H. (1877–1947). 3 U8 q9 ^! y8 A; |: f+ E0 Z; m$ D
    Hardy-Littlewood conjectures. ) ?) y4 Y$ q* s& i+ W( {% G7 d" W
    heuristic reasoning.
    , P/ j2 ?. F# }: A& w1 h' ?2 T! f* na heuristic argument by George Pólya. 8 a& f. s" b2 u& d) {/ s1 v
    Hilbert’s 23 problems. & Q5 ^; g1 R- C9 u
    home prime. 8 V. M1 d3 ?/ T% x- o9 Z) R
    hypothesis H.
    $ k5 T  o3 g, S: g1 xillegal prime.
    , n, u2 e( C6 _inconsummate number. 6 |  z6 H- j; S8 D
    induction. , Y/ ]1 s+ D6 p. l
    jumping champion.
    * p! M( {; p1 j5 k# |1 K- Tk-tuples conjecture, prime. , B! V. z6 R, D; m) e5 r
    knots, prime and composite.
    ! e/ f* F+ O. S$ ^' I; kLandau, Edmund (1877–1938).
    4 D5 E5 L0 D. `* d! H& |1 `$ fleft-truncatable prime. $ y" ]+ q% N2 l' p1 x
    Legendre, A. M. (1752–1833).
    ; q: t$ ~. p7 w) }% e; @Lehmer, Derrick Norman (1867–1938). 7 }, \- w  b) @  S% v. B- W
    Lehmer, Derrick Henry (1905–1991). 7 R. G5 E. S, j7 G. _% I# r
    Linnik’s constant. 1 r6 d) u, m  J, e7 j
    Liouville, Joseph (1809–1882). * q* W, v  ^8 g! o5 ?5 Q. b
    Littlewood’s theorem.
    7 U; ^6 l) b% A+ K+ qthe prime numbers race. 8 a+ s' V$ v$ l# y" O3 \3 g
    Lucas, édouard (1842–1891).
    . D/ j, h! j3 a: Q% S  Jthe Lucas sequence. 5 z' n( U: F: H% c1 R
    primality testing.
    + _2 Q  H* I# V) LLucas’s game of calculation.
    5 |% B6 U( W) |$ w$ V0 K6 `the Lucas-Lehmer test. 6 d, D6 L+ d7 \
    lucky numbers.
    $ b8 q9 p! z( Z0 [the number of lucky numbers and primes.
    7 O( R) p. |& z4 x; y, ~/ |“random” primes.
    $ ?( C5 m* A. B/ rmagic squares. - \, l! Q& u4 Y' c
    Matijasevic and Hilbert’s 10th problem.
    $ B# x5 @  e# z1 {" IMersenne numbers and Mersenne primes.
    1 t$ Q% B/ x+ oMersenne numbers.
    , }" t1 |4 h" g$ u' _7 @7 ~hunting for Mersenne primes.
    : w) ~) p7 I) f4 D4 Dthe coming of electronic computers.
    0 R8 A) W. A, `; T# kMersenne prime conjectures.
    ' k; Z2 v# a3 Q3 ~. X8 s: v5 ^0 zthe New Mersenne conjecture.
    ) y8 {# K* K$ _: n7 W: R! |  [how many Mersenne primes?
    . v2 d" s$ N( D' X# Q4 C( ]( c* wEberhart’s conjecture.
    4 G' j8 i7 f# u: Wfactors of Mersenne numbers. ) R6 _0 I, b3 q" o5 H
    Lucas-Lehmer test for Mersenne primes. / ^) m& T$ F( `& s6 Z8 F1 T
    Mertens constant.
    5 O# n$ l4 A- {& m% \0 K  fMertens theorem. ! }/ F- F+ L1 F3 o( k% |
    Mills’ theorem. 9 u5 h( S! ?: l: J; x* x
    Wright’s theorem.
    ; \# J- n8 R7 }$ C& z1 Umixed bag.
    0 a* o1 ~) J! L' W, ^multiplication, fast. ; ?  o: l4 b4 A  q# S) f
    Niven numbers.
    / A/ b/ A. p* Iodd numbers as p + 2a<sup>2</sup>.
    , P( g# B. ?, T& S' t: a7 h3 ~, g' _Opperman’s conjecture. 0 \9 X* ]3 M( X% _+ `
    palindromic primes.
    9 \" w) m( a0 D9 ~. o# Zpandigital primes. . A/ @' @4 }9 g" Y
    Pascal’s ** and the binomial coefficients. 7 g; s0 F7 {& o, u+ v4 S8 N, A
    Pascal’s ** and Sierpinski’s gasket. 6 W/ ~: G2 _5 N- [0 p* P
    Pascal ** curiosities. 0 @$ B3 c2 A) N4 ?0 ]$ Y, |3 l+ v
    patents on prime numbers.
    6 |) E( {! L* F* D0 p) DPépin’s test for Fermat numbers. 8 k' G- s" D; j6 j0 V7 s
    perfect numbers.
    ; u; u! H' z' X" z4 A+ ?odd perfect numbers. - w* f- l3 g% b* z; l# D! A& a( K
    perfect, multiply. / ?+ g% Y, n. b& ~7 H* |$ X
    permutable primes. $ ]- a6 H9 l. C6 P4 U
    π, primes in the decimal expansion of.
    8 j+ ^& Z5 y) u- j* G  ]! b9 W' WPocklington’s theorem.
    7 o7 m% e3 O1 U3 C1 u" K( ?Polignac’s conjectures. 6 {, A0 D4 A% E" `
    Polignac or obstinate numbers. 0 R; M" ?. c3 ]. n1 }5 C$ L
    powerful numbers.
    4 S6 \, B) O7 k5 \3 w3 m6 y4 y$ Q5 Fprimality testing.
    & u1 y' m8 S6 H, R1 a3 {probabilistic methods. # S6 N; x9 l5 D; |: ~" [
    prime number graph.
    4 _: A1 h9 e' `prime number theorem and the prime counting function. 0 X% G, [8 e3 y  ^1 j
    history. $ _6 m; o( C0 K; J
    elementary proof. + P; w  y8 w! E* l% s4 p3 g) y' ^
    record calculations.
    , M1 b) z5 j$ A2 C0 D) Oestimating p(n). ' @8 w" a( v' }0 k) J, \
    calculating p(n).
    7 \% G. j, ?  D) ]" B5 ra curiosity. " K: F* V6 J* i! G+ [8 w: Q. {
    prime pretender. 7 t) D' C$ N+ {9 ]4 g/ g
    primitive prime factor.
    3 x2 J$ U  _+ h! I( u3 h. Xprimitive roots.
    9 e8 k3 s) \7 h& t1 ^/ lArtin’s conjecture. ; X$ e$ i+ l0 J
    a curiosity.
    8 u( i1 V8 m& c% L- aprimordial. 3 a% a  ^$ Q4 L; m; @
    primorial primes.
    0 b: z9 l# a+ _Proth’s theorem. 5 ?* M3 R/ `  C$ c+ o7 z# @
    pseudoperfect numbers.
    2 Y+ a& i! S" bpseudoprimes.
    2 C6 R  _" G$ }0 }bases and pseudoprimes. 5 E4 j: V+ x+ s" c2 [( w: f
    pseudoprimes, strong.
    # K- f$ n( f/ n0 L( s5 _$ S! fpublic key encryption.
    . h5 F2 A: k5 C* G3 Q. L, ^3 ypyramid, prime.
    " k5 h7 o, M' {! I+ W* N) iPythagorean **s, prime. * D+ Y4 V# _& S  E- U3 |7 z$ ]
    quadratic residues. 5 c7 R* l8 E. I0 O1 r1 ?6 Q* V+ y3 y
    residual curiosities. 5 |' W" r/ r5 X- N  J& _
    polynomial congruences.
    4 O( l1 @7 T9 p9 H9 vquadratic reciprocity, law of. 4 E" p2 Q9 F6 o3 c) ~, k" X+ Q7 k
    Euler’s criterion. - d& s1 C' p3 x
    Ramanujan, Srinivasa (1887–1920).
    4 Q( q! }3 h: V4 C$ j6 a3 ?4 }highly composite numbers. 0 f; Y$ u: ~1 d. i1 M
    randomness, of primes. % w+ I1 f/ T+ H/ o
    Von Sternach and a prime random walk.
    . d% [" p/ t5 y/ p' Grecord primes. 6 \" m$ L2 S+ l* K8 ~# \
    some records. . E+ W7 e1 v0 n; S# n7 c" N
    repunits, prime. 4 R0 R: x7 ^+ i$ D
    Rhonda numbers. 2 {- E! l3 s" ^  X
    Riemann hypothesis.   [; v2 }( |% \$ G' m6 p
    the Farey sequence and the Riemann hypothesis.
    & f/ Y) @- I' E: P+ V5 Vthe Riemann hypothesis and σ(n), the sum of divisors function. ; a, t& N6 z' f2 f- V7 @3 `8 U1 {
    squarefree and blue and red numbers. 3 M: F3 Q* f& S+ M
    the Mertens conjecture.
    ) \! |( i/ a4 yRiemann hypothesis curiosities.
    2 i7 ~  l: v! A' fRiesel number.
    # ~9 k/ O* l8 Yright-truncatable prime.
    , T# b4 t" U1 o! w: qRSA algorithm. * j& K* ]/ q& ~1 m) ?+ b
    Martin Gardner’s challenge.
    8 m' r! p" e. |0 [RSA Factoring Challenge, the New. 9 S  e- ^6 v# \# p3 |: B$ p& \
    Ruth-Aaron numbers. $ a; B: q! ]+ a, V1 L! X) |' g
    Scherk’s conjecture.
    $ }# I  h$ ^8 N1 d  tsemi-primes.
    ' |2 n+ s8 H0 U* p**y primes.
    ; l# W8 S4 H- W8 cShank’s conjecture.
    & c  |1 q  y7 |3 [, oSiamese primes.
    " F8 [# N0 E6 h8 `+ TSierpinski numbers.
    7 b* Q3 Z" x# T; Y  H" d, g$ {Sierpinski strings.
    + t+ G0 L+ d4 d  V; ySierpinski’s quadratic. ' m5 M( v8 e4 J
    Sierpinski’s φ(n) conjecture. 0 C- k0 E! n! u9 c8 z9 N
    Sloane’s On-Line Encyclopedia of Integer Sequences. + Y4 a3 B( g* ]) M: J( F/ S
    Smith numbers. 7 d& P" q  ]. }
    Smith brothers. " M) \/ O) h9 L7 e2 K0 O
    smooth numbers.
    ' F* _- u0 R9 `9 r! x: R* ASophie Germain primes. ' o0 n0 }  w  t' N$ C
    safe primes.
    # E! C* t3 g# }squarefree numbers.
    ; H: I3 ]2 f  V* pStern prime. / \$ ?1 A1 a2 u0 H+ b0 b
    strong law of small numbers. ; W6 o7 K- s0 x# o
    triangular numbers.
    7 a6 h0 ]0 [2 Q6 Z$ V( I4 ptrivia.
    / m1 ?5 r- z- i/ \4 `5 G8 q) Btwin primes.
    9 x1 _5 F) a0 x2 |# {twin curiosities.
      d  _) n" m/ B1 ]Ulam spiral.
    : L+ Z: H  p1 @+ h( Eunitary divisors. ) a1 @' ^2 }0 I, R  Y) E0 }
    unitary perfect.
    / z5 {! F- `7 M! `' Funtouchable numbers.
      R+ T2 k% Q0 ^weird numbers. 1 G7 R% l- j" J; x5 L
    Wieferich primes. 3 z9 [; ~. c( t+ F3 ~# @
    Wilson’s theorem. ) o/ p, M/ m$ g
    twin primes.
    0 H$ I) F; S" \" l' ?Wilson primes. % P7 x% H4 q! n9 v
    Wolstenholme’s numbers, and theorems. : G! l' U, ^, Z- t& v/ Z; O/ z  @
    more factors of Wolstenholme numbers.
    , r) @' ^4 X2 j" ]5 v: cWoodall primes.
    , a( }9 ~! d( Y# W- T2 y; hzeta mysteries: the quantum connection.

      V5 j; d8 w0 X0 l9 E/ p
    $ K, n. |0 V) c4 s( t# H附件: 素数.rar (1.44 MB, 下载次数: 12)
    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持2 反对反对0 微信微信
    Just doing!~~~
    risiketu 实名认证       

    0

    主题

    3

    听众

    11

    积分

    升级  6.32%

    该用户从未签到

    自我介绍
    对数学有兴趣。希望在这里能够学点什么吧。
    回复

    使用道具 举报

    risiketu 实名认证       

    0

    主题

    3

    听众

    11

    积分

    升级  6.32%

    该用户从未签到

    自我介绍
    对数学有兴趣。希望在这里能够学点什么吧。
    回复

    使用道具 举报

    4

    主题

    3

    听众

    475

    积分

    升级  58.33%

  • TA的每日心情
    开心
    2012-3-4 23:22
  • 签到天数: 18 天

    [LV.4]偶尔看看III

    自我介绍
    初来乍到,多多关照。。。

    新人进步奖 最具活力勋章

    群组2012第三期美赛培训

    群组数学建模培训课堂1

    群组数学建模培训课堂2

    群组Matlab讨论组

    回复

    使用道具 举报

    clanswer 实名认证       

    39

    主题

    6

    听众

    5598

    积分

    TZB狙击手

    升级  11.96%

  • TA的每日心情
    奋斗
    2015-10-16 12:37
  • 签到天数: 28 天

    [LV.4]偶尔看看III

    自我介绍
    香茗一壶,斟满了心田,溢过了心坎,茗香遍体……涛声一片,传遍了脑海,浸湿了耳畔,涛溅全身……

    邮箱绑定达人 新人进步奖 最具活力勋章 发帖功臣 原创写作奖 元老勋章

    群组东北三省联盟

    群组Matlab讨论组

    群组数学建模

    群组LINGO

    群组数学建模保研联盟

    回复 4# mightyrock & G4 }8 u# k' T5 |, g3 N

    ! T! P2 O7 k( O) n! a8 e. d
    . ~' v0 u; k7 {7 S: G& E    多谢支持
    Just doing!~~~
    回复

    使用道具 举报

    风痕 实名认证       

    1

    主题

    3

    听众

    180

    积分

  • TA的每日心情
    擦汗
    2012-2-13 10:33
  • 签到天数: 3 天

    [LV.2]偶尔看看I

    自我介绍
    积极建模,好好学数学!

    群组数学建模培训课堂1

    回复

    使用道具 举报

    clanswer 实名认证       

    39

    主题

    6

    听众

    5598

    积分

    TZB狙击手

    升级  11.96%

  • TA的每日心情
    奋斗
    2015-10-16 12:37
  • 签到天数: 28 天

    [LV.4]偶尔看看III

    自我介绍
    香茗一壶,斟满了心田,溢过了心坎,茗香遍体……涛声一片,传遍了脑海,浸湿了耳畔,涛溅全身……

    邮箱绑定达人 新人进步奖 最具活力勋章 发帖功臣 原创写作奖 元老勋章

    群组东北三省联盟

    群组Matlab讨论组

    群组数学建模

    群组LINGO

    群组数学建模保研联盟

    Just doing!~~~
    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-8-27 19:08 , Processed in 0.603616 second(s), 87 queries .

    回顶部