- 在线时间
- 0 小时
- 最后登录
- 2011-10-7
- 注册时间
- 2010-9-1
- 听众数
- 3
- 收听数
- 0
- 能力
- 0 分
- 体力
- 31 点
- 威望
- 0 点
- 阅读权限
- 20
- 积分
- 13
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 11
- 主题
- 4
- 精华
- 0
- 分享
- 0
- 好友
- 1
升级   8.42% 该用户从未签到
 |
P=[0.1093,0.1110,0.1127,0.1141,0.1154,0.1164,0.1171,0.1175,0.1178,0.1179,0.1179,0.1179,0.1179,0.1180,0.1182];1 Q2 ^. ?6 ~; |* W$ J; F
T=[0.1110,0.1127,0.1141,0.1154,0.1164,0.1171,0.1175,0.1178,0.1179,0.1179,0.1179,0.1179,0.1180,0.1182,0.1185];
4 t' S$ N8 U/ l& E- |: o& M% 创建一个新的前向神经网络
9 I# Z' `! J" F& m. q) i/ ^net_1=newff(minmax(P),[10,1],{'tansig','purelin'},'traingdm')5 I* O/ l$ e h! m
% 当前输入层权值和阈值
( u' k4 t8 Q( M1 a; B# e/ MinputWeights=net_1.IW{1,1}
# K, J3 |6 F" w1 Binputbias=net_1.b{1}
) ^/ L$ J& l& i W' } O% 当前网络层权值和阈值: G7 P3 X* b, b0 A: p
layerWeights=net_1.LW{2,1}
2 J8 G6 `6 ?0 g/ E8 ?+ t, Zlayerbias=net_1.b{2}& z4 f6 A" f1 C! u
% 设置训练参数
7 I: X1 O+ z9 X0 I; A/ j. Knet_1.trainParam.show = 50;
, Z) E1 T# U0 f3 m6 ]* E5 _net_1.trainParam.lr = 0.05;
& J1 j; f% L! I' @) r- x! x) knet_1.trainParam.mc = 0.9;
, ?7 L! |5 R; x' J6 H* Znet_1.trainParam.epochs = 10000;
* Q$ u4 C8 l7 f$ ~net_1.trainParam.goal = 1e-3;
6 K3 v+ @- J' Q0 L9 d% 调用 TRAINGDM 算法训练 BP 网络 `+ S, ~9 c' {
[net_1,tr]=train(net_1,P,T);& w3 ]0 X1 n. D8 ?
% 对 BP 网络进行仿真
% @$ @" U. m) Q& G0 K, `A = sim(net_1,P);; {% M& i. D" \' y
% 计算仿真误差 , G( F4 f" G/ z: j
E = T - A;( G) t* S% B# w: j+ |$ @# l' V, v
MSE=mse(E)
( }% G9 h9 B" u0 L& G- {x=[0.1110,0.1127,0.1141,0.1154,0.1164,0.1171,0.1175,0.1178,0.1179,0.1179,0.1179,0.1179,0.1180,0.1182,0.1185]';%测试
, K% {# i' V* }6 ~sim(net_1,x)
9 c2 U9 S" T+ @9 e( C; _6 a这段程序是根据14年的数据,来预测下一年的,怎么算不出来啊 。
/ {! c: q- p( k3 {: S |
zan
|