- 在线时间
- 11 小时
- 最后登录
- 2012-1-13
- 注册时间
- 2011-12-22
- 听众数
- 4
- 收听数
- 0
- 能力
- 0 分
- 体力
- 418 点
- 威望
- 1 点
- 阅读权限
- 30
- 积分
- 204
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 137
- 主题
- 43
- 精华
- 0
- 分享
- 0
- 好友
- 0
升级   52% TA的每日心情 | 开心 2012-1-13 11:05 |
---|
签到天数: 15 天 [LV.4]偶尔看看III
|
看看-1.-3的两种:, E- a$ r. n( R6 K. R8 V8 e
* W8 k7 B9 H' u! b, WQ5:=QuadraticField(-1) ;" u: R$ A0 d) ]) l
Q5;9 D' k" U# S! Y
" ^/ i* i+ ~2 `. m3 F) q# pQ<w> :=PolynomialRing(Q5);Q;4 b4 `! @3 v- D, ]) `
EquationOrder(Q5);
7 J8 @4 S$ h: }6 A0 m HM:=MaximalOrder(Q5) ;
& M, S- X+ e, P. f4 G+ Z; }M;+ d0 Q. S7 \& T; c% T5 Z4 W
NumberField(M);
) n4 X. t7 i0 x. q0 v) x. bS1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;
% }' a6 L/ r. j B% r4 d: U4 ~IsQuadratic(Q5);
8 u5 e0 B1 K$ A0 z) M/ v0 ]# s$ rIsQuadratic(S1);
G, n# O- G6 }IsQuadratic(S4);
& p9 e* z Q# C" V! I' r% G2 tIsQuadratic(S25);
$ H6 |/ y% T$ f1 i6 |& oIsQuadratic(S625888888);
& U ^9 B( p. H$ cFactorization(w^2+1); & Q1 k ~1 a1 e5 L% S
Discriminant(Q5) ;
: f) a7 |7 V. r; HFundamentalUnit(Q5) ;
+ [ |, k' y) |7 B* i, `) f5 ?FundamentalUnit(M);7 |2 Q6 A3 v, \7 @
Conductor(Q5) ;
; ]6 Y/ A8 X( J. g; c: c F3 a
3 e/ d! t, U7 r M* p3 tName(M, -1);& m' n P3 Z O1 G
Conductor(M);4 Q; U1 f) v& F
ClassGroup(Q5) ;
! g- i' m2 j# H7 T7 [5 _0 DClassGroup(M);1 d& H: s2 R# M5 V, l0 |
ClassNumber(Q5) ;
1 {; Q, r6 {5 d5 U! t: A6 `ClassNumber(M) ;
; i- x5 Q) X9 p! |( N2 x% _% E' M$ CPicardGroup(M) ;
/ n6 F* D7 [ x5 L0 N- z0 UPicardNumber(M) ;
0 c, t: l( q! b" R( p4 k: B; }. X) z4 q$ h0 k. @
QuadraticClassGroupTwoPart(Q5);
% P- p- I# g2 Y. m3 qQuadraticClassGroupTwoPart(M);
8 ~4 @& z& D- w% W' dNormEquation(Q5, -1) ;
( H& q' \3 R5 c, V1 W$ FNormEquation(M, -1) ; ~8 S3 V: ?9 i8 [8 o' V, J
; |+ e& j1 [9 T" IQuadratic Field with defining polynomial $.1^2 + 1 over the Rational Field
! T6 B9 ]- v$ q5 r4 }$ YUnivariate Polynomial Ring in w over Q5
- w2 k* d( L8 tEquation Order of conductor 1 in Q53 w4 V4 {. v' f0 {; e. U( v
Maximal Equation Order of Q5
+ E! d/ h7 p+ x0 o9 QQuadratic Field with defining polynomial $.1^2 + 1 over the Rational Field
& I# }+ Y" Z' l( ^" T* dOrder of conductor 625888888 in Q5
6 o- {/ w. j/ k: U2 G- Htrue Quadratic Field with defining polynomial $.1^2 + 1 over the Rational Field
0 T0 G' W2 B$ H8 etrue Maximal Equation Order of Q5
; ~* l* D K+ g# ] k. m2 }, `true Order of conductor 1 in Q5
. S, b& @! A$ w0 {, J6 }* \' N! ?true Order of conductor 1 in Q5
: F; ~* _/ G; o' }. O Btrue Order of conductor 1 in Q5! F( `9 V/ c* Y1 g
[
1 i2 { i2 ~4 [+ S <w - Q5.1, 1>,
! L: k" Y$ x7 s. @) Q0 r$ C* n <w + Q5.1, 1>: k/ ^) j1 G/ D3 S, }
]$ e. C7 [7 L) L
-4& ~5 U$ M L, e; ?- m$ \
7 m& Y/ B1 T) \- r7 j$ A>> FundamentalUnit(Q5) ;' u' ^& i$ {. |4 S3 s% R) ^' i9 w) d" }
^
O0 M( \4 A+ \Runtime error in 'FundamentalUnit': Field must have positive discriminant
# M: m- Y+ n( V# _* T* l1 T7 c* g' _
1 r- ^' t" ^% S; o0 c>> FundamentalUnit(M);8 @$ ]0 b$ t$ T9 x" _; v- I) b
^% g) x, J2 i0 e1 L7 I
Runtime error in 'FundamentalUnit': Field must have positive discriminant
+ G2 v/ K$ u3 Z/ N2 x
; B/ O; q% F4 l! Z; Z* ]7 g4/ ~9 l1 P2 {: ^4 G6 P
; y% U: s3 \) e* b3 L, c7 ]>> Name(M, -1);6 N" j( F% J; K, ^4 {1 ]1 j0 r0 s
^# N- Y2 F7 B( N: r+ l. ]: g; I5 y
Runtime error in 'Name': Argument 2 (-1) should be in the range [1 .. 1]
$ R+ h7 ~- I& ]) ]7 N; l; j; |% c' S; u* E
1
* e2 L" v9 \) c! }8 F+ YAbelian Group of order 1: z8 F7 o( v2 t6 m9 b. {
Mapping from: Abelian Group of order 1 to Set of ideals of M9 b) ^- w. ^* k7 X3 K: M
Abelian Group of order 1, i' [3 \: |, s& ]. e- J
Mapping from: Abelian Group of order 1 to Set of ideals of M
8 S5 f* X: ~( t, V, Q; I& u1
1 [7 I8 \$ _2 ?- u% C+ q1$ m, I" K x' Z$ A; x( `
Abelian Group of order 1! g7 q9 a! c' K
Mapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no
' ~4 a% W8 h0 g O% Q" L8 c! Hinverse]
. d4 `6 e* O7 d2 h1
& `% I- m3 ^0 m! p. uAbelian Group of order 1& }. g; H3 \; F+ o7 W; ?$ T
Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant
\' x6 F, u- H6 [-4 given by a rule [no inverse]
! n) S! e- I9 h' Q' [3 n) a. ~: pAbelian Group of order 1% n! ~7 S! ^, L% g) Y+ v, I
Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant
" B7 S2 g. T% T5 d3 v* h% x. m-4 given by a rule [no inverse]
, Z. s% O) V. bfalse
4 m0 e3 I4 {5 E1 ~! T, R2 Yfalse+ ?, g1 h1 f7 p# ~1 ^7 _4 a
===============
/ B$ i& ^3 H, t
; F4 p8 s4 E# DQ5:=QuadraticField(-3) ;6 P. h9 W3 [, |6 N) ~4 w
Q5;
) @& K4 C8 ]& P. Z1 c& P0 L: Y# w8 _! z
Q<w> :=PolynomialRing(Q5);Q;+ c4 q& s5 W& I0 u
EquationOrder(Q5);
# \( x( g. `0 ]+ p; y+ q* m( yM:=MaximalOrder(Q5) ;
" Z, [. `% z* E$ ^; [' v6 d/ d5 c% {M;
! ^7 f1 Y- ?/ y/ ]: m% ENumberField(M);
( k: @# j$ P( w, C* ?S1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;2 o! ?5 J: J0 {6 ], J f& o
IsQuadratic(Q5);: J: _' ?6 P& |2 E n
IsQuadratic(S1);( s* f- M! U' g3 i- U0 P: h! o
IsQuadratic(S4);
4 {) j: Q1 ?/ M+ NIsQuadratic(S25);/ k" Q+ B6 U4 h9 K. Y; U4 l
IsQuadratic(S625888888);
% J9 Q, l1 }" \) p4 qFactorization(w^2+3);
9 a3 j: U6 z- V* P: WDiscriminant(Q5) ;
8 c/ t6 P0 e; y6 N% ?FundamentalUnit(Q5) ;
4 e& l! K" a9 d, v+ DFundamentalUnit(M);& n d$ \9 x7 Y+ `6 d( X
Conductor(Q5) ;
0 ]5 d* g* Y, ?1 D) H6 M/ d" X- P& S* V( r, w" i
Name(M, -3);
?+ {: |/ R* D, m: S; AConductor(M);0 w9 c Y# l+ A
ClassGroup(Q5) ;
5 W" p( W1 D. f# \2 F: \# x/ tClassGroup(M);; _4 y9 x! l# O2 u* `( D9 n
ClassNumber(Q5) ;
% T. [7 B1 n+ p- v6 ]$ _: a& p: b fClassNumber(M) ;
% |( I( k- p# N8 n/ w& uPicardGroup(M) ;5 a5 N" {2 J& P* Q* q3 c' K
PicardNumber(M) ;
H. N5 T( j7 R8 \9 h( v. R, e. y) G1 f" n/ n0 D5 ?( J5 B, s B
QuadraticClassGroupTwoPart(Q5);
" T2 o8 K3 |" o# u6 RQuadraticClassGroupTwoPart(M);& Q- N" |0 V* Q5 @9 k# o
NormEquation(Q5, -3) ;
, e5 u5 `4 s9 Q+ W& ZNormEquation(M, -3) ;
0 s- n' Q) g* Y
9 ? a: h- S" g" o4 y# SQuadratic Field with defining polynomial $.1^2 + 3 over the Rational Field1 [+ ]# M( N4 j3 L1 P9 m
Univariate Polynomial Ring in w over Q52 _, ?( Y9 K4 E9 t+ P2 t
Equation Order of conductor 2 in Q5
! y' E4 A/ z% Z7 ]# F# a" Z c2 OMaximal Order of Q5
- E! R% x; v) }! i$ s7 ]Quadratic Field with defining polynomial $.1^2 + 3 over the Rational Field! u; ?! ~# K" ?( P% i
Order of conductor 625888888 in Q5
7 O! @" i7 h. wtrue Quadratic Field with defining polynomial $.1^2 + 3 over the Rational Field/ g- X( w. x2 y: K) {5 e) a; U
true Maximal Order of Q5( m( l3 c1 A& {0 B
true Order of conductor 16 in Q57 V( p( _$ a* u
true Order of conductor 625 in Q54 _2 |% N/ W# ` W
true Order of conductor 391736900121876544 in Q5
0 x c( l% W$ F[( Y. D; y& v, s7 u8 m
<w - Q5.1, 1>,; J1 V! z3 B$ M) o2 E3 N& Z
<w + Q5.1, 1>
9 c/ Y, F( W# m, j5 L]: E f: R# t! ]6 u. V0 O) z( H
-3* J" W' \( `! e. x( ^/ R0 ^
% C( V; m) F( K# h1 G+ z& g& C>> FundamentalUnit(Q5) ;$ C4 p6 k& a& S7 U) q
^
9 r; T# {8 M7 y1 O3 p8 [Runtime error in 'FundamentalUnit': Field must have positive discriminant
) X/ \: Y( L( j( j8 o" s' o0 o$ }4 ^
. B/ X& ]7 A/ Q$ U; ]* ?& l6 V" ]
>> FundamentalUnit(M);
/ P& R5 h4 O" `1 C- b0 P2 h) } ^1 I& E. u E/ U6 b0 z
Runtime error in 'FundamentalUnit': Field must have positive discriminant
8 e# x; z0 k% a, J$ n7 [8 W+ `
& c7 Q5 p* W( Q. O! I3
l; i: n2 i' ?0 W; z; b; r- _* N' w8 z
>> Name(M, -3);+ J# M' M5 y) n; x* D1 V' O
^: ] P& t. y& Z2 e3 |( p( ?4 l
Runtime error in 'Name': Argument 2 (-3) should be in the range [1 .. 1]
; z) R7 ?# L f3 f& y8 O
& y4 f# w3 f9 n: q' ^ _1# r( r% b0 p+ u: T
Abelian Group of order 1: ^9 m1 @: G& L2 I* o; C# z5 g. R
Mapping from: Abelian Group of order 1 to Set of ideals of M
; H. e5 k5 R( }Abelian Group of order 1
( x2 z* M( B' I4 eMapping from: Abelian Group of order 1 to Set of ideals of M
7 @, h4 N3 B$ }* ~; n1
# a y, c. n2 U- w9 b: j13 f' p4 {, I( g2 I1 V) O3 k/ @% W
Abelian Group of order 1# x R. |4 J" ]1 }; S4 C+ v3 P$ y6 O0 b
Mapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no% p8 j" g9 {# J1 F t- O
inverse]) p% d" @- T$ n. n; ]' ~) I
1/ T" \5 a6 S/ r+ Y
Abelian Group of order 17 @3 W, Z* e! M+ [# r
Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant$ @7 R3 X S# e! I( o" ]
-3 given by a rule [no inverse]9 f5 K3 Z4 \( Q- O# A2 H0 g' g
Abelian Group of order 1, K U" P. W) x4 {
Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant/ M6 j& L: G" _6 \2 D
-3 given by a rule [no inverse]
' C# H- w+ ~) f; v, X9 hfalse9 P3 F/ Z3 T; v) y+ |
false |
|