- 在线时间
- 53 小时
- 最后登录
- 2017-7-6
- 注册时间
- 2009-8-5
- 听众数
- 6
- 收听数
- 0
- 能力
- 0 分
- 体力
- 13389 点
- 威望
- 56 点
- 阅读权限
- 200
- 积分
- 5598
- 相册
- 0
- 日志
- 1
- 记录
- 5
- 帖子
- 1693
- 主题
- 39
- 精华
- 11
- 分享
- 0
- 好友
- 113

TZB狙击手
升级   11.96% TA的每日心情 | 奋斗 2015-10-16 12:37 |
---|
签到天数: 28 天 [LV.4]偶尔看看III
- 自我介绍
- 香茗一壶,斟满了心田,溢过了心坎,茗香遍体……涛声一片,传遍了脑海,浸湿了耳畔,涛溅全身……
群组: 东北三省联盟 群组: Matlab讨论组 群组: 数学建模 群组: LINGO 群组: 数学建模保研联盟 |
2#
发表于 2010-5-26 13:17
|只看该作者
|
|邮箱已经成功绑定
二、几何学范畴
" W4 o) h, w, V, \ m/ h( e4 @' U1 U6 Y8 p2 J
1、初等几何
' B I5 I3 B9 e$ n# i
& D3 G/ v$ E6 ^, t, [2 M 在希腊语中,“几何学”是由“地”与“测量”合并而来的,本来有测量土地的含义,意译就是“测地术”。“几何学”这个名词,系我国明代数学家根据读音译出的,沿用至今。2 ]- _( R2 J9 ]- @- L6 Y
# ^; G, o1 |' r* H 现在的初等几何主要是指欧几里得几何,它是讨论图形(点、线、面、角、圆等)在运动下的不变性质的科学。例如,欧氏几何中的两点之间的距离,两条直线相交的交角大小,半径是r的某一圆的面积等都是一些运动不变量。
1 D6 @2 }4 @3 |% |
. n9 N! r, K' {% ] 初等几何作为一门课程来讲,安排在初等代数之后;然而在历史上,几何学的发展曾优先于代数学,它主要被认为是古希腊人的贡献。
! G+ X1 }. \9 d; j9 t5 x. Z$ D6 a& n: [* q; F- V
几何学舍弃了物质所有的其它性质,只保留了空间形式和关系作为自己研究的对象,因此它是抽象的。这种抽象决定了几何的思维方法,就是必须用推理的方法,从一些结论导出另一些新结论。定理是用演绎的方式来证明的,这种论证几何学的代表作,便是公元前三世纪欧几里得的《原本》,它从定义与公理出发,演绎出各种几何定理。( W2 }* ^" t' W+ f1 Q
3 j& d' v- `$ d) z 现在中学《平面三角》中关于三角函数的理论是15世纪才发展完善起来的,但是它的一些最基本的概念,却早在古代研究直角三角形时便己形成。因此,可把三角学划在初等几何这一标题下。
3 I5 p' r3 |' F. R' w; C
! v# M& i* f+ w1 T 古代埃及、巴比伦、中国、希腊都研究过有关球面三角的知识。公元前2世纪,希帕恰斯制作了弦表,可以说是三角的创始人。后来印度人制作了正弦表;阿拉伯的阿尔·巴塔尼用计算sinθ值的方法来解方程,他还与阿布尔·沃法共同导出了正切、余切、正割、余割的概念;赖蒂库斯作了较精确的正弦表,并把三角函数与圆弧联系起来。
/ h4 ~8 N7 |" u$ u# x4 I- z3 q9 h# u9 r0 r( S2 F
由于直角三角形是最简单的直线形,又具有很重要的实用价值,所以各文明古国都极重视它的研究。我国《周髀算经》一开始就记载了周朝初年(约公元前1100年左右)的周公与学者商高的对话,其中就谈到“勾三股四弦五”,即勾股定理的特殊形式;还记载了在周公之后的陈子,曾用勾股定理和相似图形的比例关系,推算过地球与太阳的距离和太阳的直径,同时为勾股定理作的图注达几十种之多。在国外,传统称勾股定理为毕达哥拉斯定理,认为它的第一个一致性的证明源于毕氏学派(公元前6世纪),虽然巴比伦人在此以前1000多年就发现了这个定理。到现在人们对勾股定理已经至少提供了370种证明。4 k I9 F' E. O: {
; w3 @7 V1 q; m" [$ C- C% u 19世纪以来,人们对于关于三角形和圆的初等综合几何,又进行了深入的研究。至今这一研究领域仍然没有到头,不少资料已引申到四面体及伴随的点、线、面、球。
5 r0 O4 J2 _; D* k. Q7 o. |7 W3 h& t3 C2 U2 N0 d) d( r
j1 B8 E' p! u8 X# ^4 {, O
2、射影几何
& k1 P6 u3 L5 u8 Y) L4 O1 y6 M0 _9 F$ f+ F" z0 A9 z! w
射影几何学是一门讨论在把点射影到直线或平面上的时候,图形的不变性质的一门几何学。幻灯片上的点、线,经过幻灯机的照射投影,在银幕上的图画中都有相对应的点线,这样一组图形经过有限次**以后,变成另一组图形,这在数学上就叫做射影对应。射影几何学在航空、摄影和测量等方面都有广泛的应用。
- W, o" P" V' j/ S- p- c
. s- ` M3 F8 p6 Q+ U: C4 ^2 k 射影几何是迪沙格和帕斯卡在1639年开辟的。迪沙格发表了—本关于圆维曲线的很有独创性的小册子,从开普勒的连续性原理开始,导出了许多关于对合、调和变程、透射、极轴、极点以及**的基本原理,这些课题是今天学习射影几何这门课程的人所熟悉的。年仅16岁的帕斯卡得出了一些新的、深奥的定理,并于9年后写了一份内容很丰富的手稿。18世纪后期,蒙日提出了二维平面上的适当投影表达三维对象的方法,因而从提供的数据能快速算出炮兵阵地的位置,避开了冗长的、麻烦的算术运算。: F# j4 G' }' e) l& b9 C
& A, o# c% ^5 S
射影几何真正独立的研究是由彭赛勒开创的。1822年,他发表了《论图形的射影性质》一文,给该领域的研究以巨大的推动作用。他的许多概念被斯坦纳进一步发展。1847年,斯陶特发表了《位置几何学》一书,使射影几何最终从测量基础中解脱出来。
3 f7 Y& n: U0 X
& ]9 W5 x% G3 g( L! `$ g 后来证明,采用度量适当的射影定义,能在射影几何的范围内研究度量几何学。将一个不变二次曲线添加到平面上的射影几何中,就能得到传统的非欧几何学。在19世纪晚期和20世纪初期,对射影几何学作了多种公设处理,并且有限射影几何也被发现。事实证明,逐渐地增添和改变公设,就能从射影几何过渡到欧几里得几何,其间经历了许多其它重要的几何学。& I8 }: B+ e! |7 C9 ?' U
* p* _9 v5 S$ ~- x
" U0 @0 E+ A' H6 f+ n! C* o2 z
3、解析几何3 ^% x+ x, K/ H% b2 ?9 a& m% [
3 C e4 U9 G5 n' f: N" Y+ F- H
解析几何即坐标几何,包括平面解析几何和立体解析几何两部分。解析几何通过平面直角坐标系和空间直角坐标系,建立点与实数对之间的一一对应关系,从而建立起曲线或曲面与方程之间的一一对应关系,因而就能用代数方法研究几何问题,或用几何方法研究代数问题。0 ?: d; t: ^' o
1 {: _3 ?1 A3 f! B1 V/ L; d; D
在初等数学中,几何与代数是彼此独立的两个分支;在方法上,它们也基本是互不相关的。解析几何的建立,不仅由于在内容上引入了变量的研究而开创了变量数学,而且在方法上也使几何方法与代数方法结合起来。 ?- W4 ^4 P0 t/ S- i0 ` U8 a
- I T0 m$ ~9 x& c- ?2 ]; f 在迪沙格和帕斯卡开辟了射影几何的同时,笛卡儿和费尔马开始构思现代解析几何的概念。这两项研究之间存在一个根本区别:前者是几何学的一个分支,后者是几何学的一种方法。; m! E7 }6 c* h8 q
5 G, A3 I* a2 k4 a8 j
1637年,笛卡儿发表了《方**》及其三个附录,他对解析几何的贡献,就在第三个附录《几何学》中,他提出了几种由机械运动生成的新曲线。在《平面和立体轨迹导论》中,费尔马解析地定义了许多新的曲线。在很大程度上,笛卡儿从轨迹开始,然后求它的方程;费尔马则从方程出发,然后来研究轨迹。这正是解析几何基本原则的两个相反的方面,“解析几何”的名称是以后才定下来的。' H3 h3 q* e/ v) Q
5 Z! B% k6 s' d% o 这门课程达到现在课本中熟悉的形式,是100多年以后的事。象今天这样使用坐标、横坐标、纵坐标这几个术语,是莱布尼兹于1692年提出的。1733年,年仅18岁的克雷洛出版了《关于双重曲率曲线的研究》一书,这是最早的一部空间解析几何著作。1748年,欧拉写的《无穷分析概要》,可以说是符合现代意义的第一部解析几何学教程。1788年,拉格朗日开始研究有向线段的理论。1844年,格拉斯曼提出了**空间的概念,并引入向量的记号。于是**解析几何出现了。( Y% s! i, h4 K: \
; m1 b. t8 t, n+ l" c6 i$ f
解析几何在近代的发展,产生了无穷维解析几何和代数几何等一些分支。普通解析几何只不过是代数几何的一部分,而代数几何的发展同抽象代数有着密切的联系。
+ B! ?& B/ j3 u5 @4 R* n; J ' d. @; o3 x4 w5 l0 v4 f
4 D0 M/ C h7 S% Q6 z* Y* H8 O4 I3 u; G 4、非欧几何
# I) N1 g" ]& P( }* k& f. z1 z, B/ U
非欧几何有三种不同的含义:狭义的,单指罗氏(罗巴切夫斯基)几何;广义的,泛指一切和欧氏(欧几里得)几何不同的几何;通常意义的,指罗氏几何和黎曼几何。; x/ u* a, k* V. x; b, a
; r8 K1 Y# E( `, E' P7 p/ p2 s! ]
欧几里得的第5公设(平行公设)在数学史上占有特殊的地位,它与前4条公设相比,性质显得太复杂了。它在《原本》中第一次应用是在证明第29个定理时,而且此后似乎总是尽量避免使用它。因此人们怀疑第五公设的公理地位,并探索用其它公理来证明它,以使它变为一条定理。在三千多年的时间中,进行这种探索并有案可查的就达两千人以上,其中包括许多知名的数学家,但他们都失败了。
0 Q! y0 b9 J1 T( L2 `6 k; P2 [- n' M
罗巴契夫斯基于1826年,鲍耶于1832年发表了划时代的研究结果,开创了非欧几何。在这种几何中,他们假设“过不在已知直线上的一点,可以引至少两条直线平行于已知直线”,用以代替第五公设,同时保留了欧氏几何的其它公设。5 u" }6 ~' a) t. O6 X8 H n/ ~
1 i: ^3 j& N5 w 1854年,黎曼推出了另一种非欧几何。在这种几何中,他假设“过已知直线外一点,没有和已知直线平行的直线可引”,用以代替第5公设,同时保留了欧氏几何的其它公设。1871年,克莱因把这3种几何:罗巴契夫斯基—鲍耶的、欧几里得的和黎曼的分别定名为双曲几何、抛物几何和椭圆几何。, Y9 a4 j! M! T, A
4 i; m/ S6 _! c7 a5 ^5 K) o9 a1 Q
非欧几何的发现不仅最终解决了平行公设的问题——平行公设被证明是独立于欧氏几何的其它公设的,而且把几何学从其传统模型中解放出来,创造了许多不同体系的几何的道路被打开了。
: u/ }3 B0 I3 U( Y) m4 E; L1 ^; B% S; ]& }1 u* G
1854年,黎曼发表了“关于作为几何学基础的假设的讲演”。他指出:每种不同的(两个无限靠近的点的)距离公式决定了最终产生的空间和几何的性质。1872年,克莱因建立了各种几何系统按照不同变换群不变量的分类方法。
/ f) I# e! \4 L# F/ G( R: m* H2 e6 Y: [& s, ?- _; L
19世纪以后,几何空间概念发展的另一方向,是按照所研究流形的微分几何原则的分类,每一种几何都对应着一种定理系统。1899年,希尔伯特发表了《几何基础》一书,提出了完备的几何公理体系,建立了欧氏几何的严密的基础,并给出了证明一个公理体系的相容性(无矛盾性)、独立性和完备性的普遍原则。按照他的观点,不同的几何空间乃是从属于不同几何公理要求的元素集合。欧氏几何和非欧几何,在大量的几何系统中,只不过是极其特殊的情形罢了。+ x! g7 }; ^5 R, v# |
: L) q, R0 m# L
7 ~4 I- T% F' ^$ w) O; h
5、拓扑学' M0 m, s2 X b4 t, S! i
& s9 i J! _6 U' ?% Z+ t3 }. o
1736年,欧拉发表论文,讨论哥尼斯堡七桥问题。他还提出球面三角形剖分图形顶点、边、面之间关系的欧拉公式,这可以说是拓扑学的开端。) Y. ~6 d( b4 Q7 V3 h
; D4 S8 z4 r. X! v4 [+ @4 n: q; d. t
庞加莱于1895~1904年建立了拓扑学,采用代数组合的方法研究拓扑性质。他把欧拉公式推广为欧拉—庞加莱公式,与此有关的理论现在称为同调理论和同伦理论。以后的拓扑学主要按照庞加莱的设想发展。9 p$ m+ s$ X$ R
1 g5 M5 W: Q: P5 @ V# Z! G; M, O 拓扑学开始是几何学的一个分支,在二十世纪它得到了极大的推广。1906年,弗雷歇发表博士论文,把函数作为一个“点”来看,把函数收敛描绘成点的收敛,这就把康托的点集论和分析学的抽象化联系起来了。他在函数所构成的集合中引入距离的概念,构成距离空间,展开了线性距离空间的理论。在这个基础上,产生了点集拓扑学。在豪斯道夫的《点集论纲要》一书中,出现了更一般的点集拓扑学的完整想法。第二次世界大战后,把分析引进拓扑,发展了微分拓扑。+ j E6 Q: l2 r. Y# r7 Q6 Q! z
4 E) s( [' m+ c, h) l 现在的拓扑学可以粗略地定义为对于连续性的数学研究。任何事物的集合都能在某种意义上构成拓扑空间,拓扑学的概念和理论已基本完组成为数学的基础理论之一,渗入到各个分支,并且成功地应用于电磁学和物理学的研究。 |
|