QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 736|回复: 0
打印 上一主题 下一主题

rosebt:小数据也很美丽

[复制链接]
字体大小: 正常 放大

937

主题

117

听众

3万

积分

升级  0%

  • TA的每日心情

    2020-10-25 11:55
  • 签到天数: 264 天

    [LV.8]以坛为家I

    自我介绍
    内蒙古大学计算机学院

    社区QQ达人 金点子奖 助人为乐奖 风雨历程奖

    群组2013年数学建模国赛备

    跳转到指定楼层
    1#
    发表于 2014-4-17 02:44 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta

    市场营销技术将“大数据”鼓吹的天花乱坠,反而忽略了这样一个事实:更易操作的,更有价值的见解更有可能在小数据而不是大数据中被找到。有很多理由支持这一点,但主要的理由是数据的“诅咒”。“大数据”意味着和数据集有着不同性质的庞大数据集,需要特别的数据科学方法来区分信号和噪音,并提取出有意义的信息,这需要特别的计算系统和计算能力。


    Vincent Granville这样定义大数据的诅咒(http://www.analyticbridge.com/profiles/blogs/the-curse-of-big-data)。简单来说,你会在大数据集中发现更多“统计上显著”的关系。“统计上显著”是一个统计检验,检验观测值是否具有某个不仅仅是巧合的规律,这个规律可能有也可能没有意义。数据集越大,越多的“统计上显著”的关系将会无意义—这将大大提高人们把噪音误解为信号的可能性。“信号”意味着根据科学对数据有意义的解读,并可能转化成科学证据和知识。“噪音”意味着对数据无科学依据的解读,不会被认作是科学证据。但噪音可能被操纵成为某种形式的知识(事实上是无稽之谈)。

    所以大数据在数据中会产生更多关联和规律—然而也产生比信号更多的噪音。统计第二类错误(存伪)的数量大大增加。换句话说,更多非因果关系的相互关系导致了对真相的幻觉。

    “相互关系”意味着一系列广义的统计联系。“虚假的相互关系”意味着不是由于两变量间的直接关系,而是其他变量对其影响而产生的关系。“因果关系”意味着有科学证据支持的原因和结果之间的关系(比如一个事件(原因)和另一个事件(结果)的关系,第二个事件被认为是第一个事件的结果)。“相互关系并不能推断出因果关系”是科学界和统计学界的一个术语,来强调两变量之间有相互关系并不一定能推断出一个导致了另一个。

    但人们天生就擅长看到规律。这对人类在丛林里生存是必要的素质,但却损害了我们很多形式的抽象思维—特别是误将数据中的随机性理解为有意义。换句话说,将噪音误解为信号。

    大数据使我们难以在大堆数据中发现有操作性的、有价值的见解。它的危险是,我们将越来越多的错将数据中的随机性当作信号,从而做出错误的决策。

    我有一个策略来解决“大数据的诅咒”这一问题—在很多情形下(但不是所有),有意的将大数据集分解为若干小数据集。将大数据集分解为小数据集应该有技巧的进行,而不是随意而为。分析和测试小数据集来区分信号和噪音并提取意义要比直接分析大数据容易得多。

    时刻注意大数据的诅咒,避免错将噪音当成信号。小数据实际上也很美丽。


    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-8-5 18:53 , Processed in 0.795617 second(s), 51 queries .

    回顶部