- 在线时间
- 0 小时
- 最后登录
- 2006-4-6
- 注册时间
- 2005-5-20
- 听众数
- 2
- 收听数
- 0
- 能力
- 0 分
- 体力
- 45 点
- 威望
- 0 点
- 阅读权限
- 20
- 积分
- 66
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 101
- 主题
- 15
- 精华
- 0
- 分享
- 0
- 好友
- 0

小木屋
升级   64.21% 该用户从未签到
 |
7 b- D1 N0 c& P3 s( F1 T% ], `: l; A# D6 ?% T
' n7 r& G' Q+ v8 `0 \
七桥问题和一笔画 |
# @( t( k# D; I8 }; {# j8 p6 g9 O) f1 H r
| : x; c0 M: ]. `8 H$ x
8 ?! [) s0 ~4 M# ?2 K2 t! `9 z6 k& f( O' ?8 {+ v' y
% p1 x t# _, a& J7 J( r
* R9 l+ s. m4 E$ f
18世纪时,欧洲有一个风景秀丽的小城哥尼斯堡,那里有七座桥。如图1所示:河中的小岛A与河的左岸B、右岸C各有两座桥相连结,河中两支流间的陆地D与A、B、C各有一座桥相连结。当时哥尼斯堡的居民中流传着一道难题:一个人怎样才能一次走遍七座桥,每座桥只走过一次,最后回到出发点?大家都试图找出问题的答案,但是谁也解决不了这个问题。
图 1 图 2 七桥问题引起了著名数学家欧拉(1707—1783)的关注。他把具体七桥布局化归为图2所示的简单图形,于是,七桥问题就变成一个一笔画问题:怎样才能从A、B、C、D中的某一点出发,一笔画出这个简单图形(即笔不离开纸,而且a、b、c、d、e、f、g各条线只画一次不准重复),并且最后返回起点?欧拉经过研究得出的结论是:图2是不能一笔画出的图形。这就是说,七桥问题是无解的。这个结论是如何产生呢?请看下面的分析。
如果我们从某点出发,一笔画出了某个图形,到某一点终止,那么除起点和终点外,画笔每经过一个点一次,总有画进该点的一条线和画出该点的一条线,因此就有两条线与该点相连结。如果画笔经过一个n次,那么就有2n条线与该点相连结。因此,这个图形中除起点与终点外的各点,都与偶数条线相连。如果起点和终点重合,那么这个点也与偶数条线相连;如果起点和终点是不同的两个点,那么这两个点部是与奇数条线相连的点。综上所述,一笔画出的图形中的各点或者都是与偶数条线相连的点,或者其中只有两个点与奇数条线相连。
图2中的A点与5条线相连结,B、C、D各点各与3条线相连结,图中有4个与奇数条线相连的点,所以不论是否要求起点与终点重合,都不能一笔画出这个图形。
1736年,欧拉在圣彼得堡科学院作了一次学术报告。在报告中,他证明了上述结论。后来他又给出了鉴别任一图形能否一笔画出的准则,即欧拉定理。为了介绍这个定理,我们先来看下面的预备知识:
由有限条线组成的图形叫做网络,其中每条线都要求有两个不同的端点。这些线叫做网络的弧,弧的端点叫做网络的顶点。例如,图2是一个网络,a、b、c、d、e、f、g是它的7条弧,A、B、C、D是它的四个顶点。
网络中互相衔结的一串弧叫做一条路。如果网络中任意两个顶点都可以用一条路连结起来,那么就称这个网络为连通的;否则称为不连通的。例如,图2是连通的网络;图3是不连通的网络,其中有的顶点(例如A与D)之间没有路线连结。
图 3 图 4
网络中以某顶点为端点的弧的条数,叫做该顶点的叉数。叉数是奇数的顶点叫做奇顶点,叉数是偶数的顶点叫做偶顶点。
下面介绍欧拉定理。
欧拉定理 如果一个网络是连通的并且奇顶点的个数等于0或2,那么它可以一笔画出;否则它不可以一笔画出。
用欧拉定理可以很方便地判断一个简单图形是否可以一笔画出。例如,图3是不连通网络,它不能一笔画出(尽管它的奇顶点个数为0);图4中实线所示图形有8个奇顶点.它不能一笔画出,如果将图中虚线补为实线,那么奇顶点只有F和G两个,所得图形就能一笔画出了(以F为起点,G为终点;或G为起点,F为终点)。
试问下列图形能否一笔画出?如能画出应怎样画?如不能画出理由是什么? | | , h% P$ f0 n6 A. t
|
$ |6 E5 }" O( f6 [; s6 e, e7 X! I! S; T0 I( h2 k$ W. T
|
1 R7 \& j6 D7 C, f. D( p) Y# m! [帖子相关图片:
 | |
zan
|