- 在线时间
- 13 小时
- 最后登录
- 2012-5-25
- 注册时间
- 2012-1-15
- 听众数
- 4
- 收听数
- 0
- 能力
- 0 分
- 体力
- 149 点
- 威望
- 0 点
- 阅读权限
- 20
- 积分
- 66
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 43
- 主题
- 3
- 精华
- 0
- 分享
- 0
- 好友
- 1
升级   64.21% TA的每日心情 | 开心 2012-5-25 19:17 |
|---|
签到天数: 24 天 [LV.4]偶尔看看III
 |
经典的数学物理方程有三类:分别是波动方程,输运方程,稳定场方程。他们都是二阶偏微分方程,PDE方程。# c1 y0 B+ L( q) G$ b
偏微分方程反应的是自然地物理规律,给某区域定初始条件及边界条件,由偏微分方程(即自然地物理规律)即可得到今后任意时刻系统的状态。
9 P, A! s% B: R6 x9 C2 J 波动方程反应的系统是怎么振动的,初始条件需要各质点初始的位置和初始的速度,边界条件反应的是边界上有没有力的作用。已知这些条件之后,则根据偏微分方程可以得到之后的任意时刻体系的状态。4 E9 D9 q+ Y+ |- v2 r9 U9 j
输运方程,输运的可以是热量可以是能量,也可以是粒子,下面以输运粒子为例说明,在一个系统中,给定初始浓度分布,给定边界条件,边界条件是在边界上有没有粒子的注入和流出,根据输运方程则可以得到以后任意时刻体系的浓度分布。还是那句话,偏微分方程反映的是物理规律,大自然要求的是粒子有高浓度向低浓度扩散,这种规律就是偏微分方程。当然在**问题中并不这么简单。 j. c1 X. |; z2 \7 ?
稳定场方程研究的是稳定问题,也就不含时间项,偏微分方程中也没有时间项,div(grad T )=f(x,y,z), 这种形式。下面以温度场为例,比如一个矩形,给定四边的任意温度分布,则由稳定场方程可以得到系统无限长时间后的稳定状态的温度分布,无限长时间之后的状态,所以和初始的温度分布没有关系了,所以初始浓度分布是任意的。
' l# W( l7 r- n! M 这就是数学物理方程的物理意义,但是实际上用求解析解的方法求解方程非常困难,通常采用数值模拟的方法,这种数值模拟用MATLAB PDE工具箱可以做,自己编程也可以做,自己编程时要先将偏微分方程转化为差分方程,再用迭代方法进行模拟。具体的哪位朋友想知道详细的回帖说明,我在具体说明 |
zan
|