|
求fh3函数在[0.001 0.01]和[0.003 0.1]之间的最小值,估计在1至5之间。
2 `$ v0 D8 E* Nfunction f=fh3(n)$ G! x' R& X4 x3 N! X n6 s9 J
g2=2^0.5-1;
+ M+ s; e( A4 p Emu0=4*pi*10^(-7);2 \7 w5 O2 q" \1 `0 m
gaf=7.8*10^3;% y. f# u& g, f0 J
gacu=8.9*10^3;. A$ ]6 z' `+ j8 v; T% h
gat=4.5*10^3;
. E; y- g. [! T/ X* Ggaa=2.7*10^3;$ w( Q: _, X/ F s3 g
p=2.7*10^4;
5 P" [4 a! X6 Vq=3*10^(-5);4 y& j; ?/ x- ^5 ~5 K& y$ p
rou=0.7;* m! W7 D9 H( _# r, t$ `
kb=0.9;( x: F9 O* }* n' W# s
%j0=8*10^6;5 p# I* n/ h# s1 Y$ W! ?
j0=2*10^6;
' b7 y0 c! f# `, ~5 Qkd=3;( m* Q; b* x, r' Q& s6 _! F: S0 n
bm=2;* T7 u" W3 m- t0 R1 ^2 j
ht=2*10^(-3);
. |/ X, p4 v1 P+ J( m1 A Smu1=10^8/1.75;
- Y4 `' l6 _6 rkt1=2*pi*gat*ht;) E# [! i2 S- e: p2 v# s
kt2=2*pi*gaa*ht;
! W! H* a' Q5 X/ Okr=1.02;
/ I' u8 c6 Y( O8 z' Vku=(mu0/2/bm)^0.5;
. N! O% L: G) I& }/ S4 Vkx=mu0^0.5*kb*kd^2*j0;
' y& C5 b, L4 E2 g( W7 ]: Ukp=(2*q/pi/p)^0.5;
) t# y1 s$ x1 O9 Vkg=mu0^0.5*kb*kd*j0*g2;
" P0 Y8 A$ V; S0 r1 ~rx=ku*kx-kp*kg;
6 w7 m! n$ C' ~1 t E6 Sra=ku*kg;: s8 W! i- C! R0 J4 i; ~
rc=kp*kx;! ?+ T6 p% a) `; {
kj=mu0*kb*kd*j0;
/ I; Y$ m W) V) Q3 n) r! bkj=kj/kx;8 V9 m% I+ V; C+ _9 R% A: ~& K
h0=3*ht;' O, E- M" E q/ h8 e+ K
h1=2*(1+1/rou)*q/pi;( ]: q) U; g0 M5 ^! D' x
h2=2*(kd-1);$ k% p1 a% C2 Z- c
h3=1/bm*(mu0*p*q/(2*pi))^0.5;0 a4 h: F5 e) ^7 f& G* s5 p
h4=1/kj*(mu0*p*q/(2*pi))^0.5;
7 y7 J2 |$ z; xhg=2*pi*kr*ht;0 K- y; U( x g, p
w1=gaf/bm*(pi*p*q*mu0/2)^0.5;
. {# {% y3 c# B) {5 \/ g+ @w1p=8*g2*kd*w1;
. l8 O+ U: h* ]6 I+ j8 R0 [w2=2*kd^2*gaf*(2*pi*mu0*p*q)^0.5/kj;
$ c7 R: M8 n y4 ~- Bw3p=2*g2*gacu/kj*(2*pi*p*q*mu0)^0.5;7 o E0 E! b( u& m
w3pp=hg*h3;
; a) o/ W1 x" ^" cw3=w3p+w3pp;
# e2 F3 Y5 ^2 ^: p4 w/ gw4=2*kd*gacu/kj*(2*pi*p*q*mu0);
5 R6 O B: L# C3 `( ew5=5*pi*ht*gat;: G! j! Z. _5 D7 B
w6=hg*h0*gat;. g) _0 p3 \( V6 Z
w7=hg*h1*gat;
1 P& j) O, N1 z/ ]w8=hg*h0*gat; [1 O N& c n. [- u$ h
w9=hg*h4*gat;
+ d/ ?7 W9 {& [/ x+ mf=w1p*r*x^0.5+w2*x^1.5/(g2*r-kd*x)+w3*r*x^(-0.5)+w4*x^0.5+w5*r^2+w6*r+w7/r+w8*r*x+w9*r*x^(-0.5)/(g2*r-kd*x);
* F/ S2 U# j# b |