QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 7516|回复: 0
打印 上一主题 下一主题

mathematica一直运行没错误,大家帮忙看一下

[复制链接]
字体大小: 正常 放大
上官        

1

主题

1

听众

2

积分

升级  40%

该用户从未签到

跳转到指定楼层
1#
发表于 2020-3-24 15:32 |只看该作者 |倒序浏览
|招呼Ta 关注Ta
Clear[Am, As, Aa, \[Alpha], \[Rho], \[Theta]m, \[Theta]s, \& B6 a$ W& J& R1 _4 y) s% [
\[CurlyPhi]m, \[CurlyPhi]s, \[Epsilon]]
4 L$ S" h/ w! L: H9 L\[Gamma]a = 0.1; \[Gamma]m = 0.15; \[Gamma]s = 5 P* \2 B. u" M' C2 y1 ?$ T% f
1 - \[Gamma]a - \[Gamma]m;$ e9 S* }% p: b: o# E
\[Epsilon] = 0.04; \[Alpha] = 0.3; \[Rho] = 0.04;! `( p6 P; U! t2 m3 g
\[Theta]m = 0.75; \[Theta]s = 0.9;
3 E* ]' X2 n/ Z) r- TgRate = 0.02;5 J5 B6 k" e; k, L4 v$ L
Am = (gRate + \[Rho])/\[Alpha]; Ba = 4; Bm = 1; Bs = 2.5;. Y( |. Z) C, v9 x! s+ a) I2 B% X
ps = Bm/Bs; pa = Bm/Ba;
, x1 i, _; i4 ]( _$ a& M\[Delta] = 0.03;
4 k  B3 X" x7 [& a' |3 P2 dB = \!\(TraditionalForm\`\*1 N$ r) G; m5 _. a$ d, G
FractionBox[
" B: a# ?: M5 G9 j! LRowBox[{: b  H3 \/ j* `
RowBox[{
" D+ f4 o' @7 X* TRowBox[{
/ C1 G0 l" b8 p  V$ F6 ^- {; UStyleBox["(",9 {! `; d0 q' b6 x8 l8 D
SpanMinSize->1.,
' N6 z1 M0 P) nSpanMaxSize->1.], # q% k' e% {& m# \$ b4 [
RowBox[{"1", "\[Minus]", "\[Alpha]"}], 9 o/ ]; ]. Q5 u6 x( V1 c
StyleBox[")",
0 _9 u# V  y3 S, |SpanMinSize->1.,) G" ?, B; |  V4 J: V. K) D
SpanMaxSize->1.]}], "gRate"}], "+", "\[Rho]"}],
5 w! V: U6 b8 B1 k  g      "\[Alpha]"] \[Minus] \[Delta]\);
$ z, T* c. L1 V2 k. x& \  ]cap = 10;
$ f, v/ c, c1 J+ dcsp = (pa*cap)/ps;
! s5 o6 t3 I3 \( `D = ((1 \[Minus] \[Alpha])*
+ |- m( d2 R( u/ e    gRate + \[Rho] - \[Alpha]*\[Delta])/(\[Rho] + gRate);
3 q# z' g  L- |\[CurlyPhi]m = 0.1; \[CurlyPhi]s = 0.1;
( a9 ^2 J/ z; D) m+ O) YPrint["*** Initial Values ***"]
9 {% z. z! H6 b7 p8 O2 u. eE0 = 1.5;2 I4 C* x' S1 L  e: W  E& X
K0 = E0/B;* H9 E) v6 M; X* S' `
hm0 = 0.25; hs0 = 0.25;(* initial values *)
) b) a' V$ V: |: {\[Eta]m0 = hm0/K0; \[Eta]s0 = hs0/K0;# P+ A0 Q* b( H4 E& D
xm0 = (B*\[Gamma]m^\[Epsilon]*
, {; ]! t: W# x4 \   hm0^(\[Theta]m*(1 - \[Epsilon])))/(\[Gamma]a^\[Epsilon]*pa^(
1 m7 ?1 q! X  ^6 {6 D9 C4 H3 w    1 - \[Epsilon]) + \[Gamma]m^\[Epsilon]*6 [# w( V, \3 C
    hm0^(\[Theta]m*(1 - \[Epsilon])) + \[Gamma]s^\[Epsilon]*(ps*% X! X' ^* v, o; N* M
      hs0^\[Theta]s)^(1 - \[Epsilon]));
3 {: W: g- G2 e9 D& e0 wxs0 = (B*\[Gamma]s^\[Epsilon]*(ps*, h. u; p8 H1 h7 G( {& N
     hs0^\[Theta]s)^(1 - \[Epsilon]))/(\[Gamma]a^\[Epsilon]*pa^(; ^" R1 G8 @) S7 f
    1 - \[Epsilon]) + \[Gamma]m^\[Epsilon]*
: r. K/ a) r0 f. z  _  H# n1 a    hm0^(\[Theta]m*(1 - \[Epsilon])) + \[Gamma]s^\[Epsilon]*(ps*: C, T; {- s) k5 B7 U
      hs0^\[Theta]s)^(1 - \[Epsilon]));
" w4 p- x5 T, M; k! W3 aPrint["\[Eta]_{m,0}=" <> ToString[\[Eta]m0],
( x, O2 D% v( h- M ", \[Eta]_{s,0}=" <> ToString[\[Eta]s0],
) f; |  t, z* A ", x_{m,0}=" <> ToString[xm0], ", x_{s,0}=" <> ToString[xs0]]# q- A( k/ |  w
TT = 100;(* end time *)/ S/ f, ?4 A% L) H- I: ?
(* Solve differential equations *)% C/ N" s& C7 z8 k4 O
Sol = NDSolve[{xs'[t] = (1 - \[Epsilon])*; S( K, t/ J% n# j$ T( w
     xs[t]*(   (1 - xs[t]/6 `) v' r/ V3 Z. o8 o- z
         B)*(\[Theta]s*\[CurlyPhi]s*(xs[t]/(ps*\[Eta]s[t]) - 1) -
  e! h, y9 P4 o2 P& T1 H3 |         xm[t]/B \[Theta]m*\[CurlyPhi]m*(xm[t]/\[Eta]m[t] - 1))), 5 ^& d3 V5 m0 H- ^6 j0 k
   xm'[t] == (1 - \[Epsilon])*
1 ]+ O& R5 Y3 w  b" L0 I     xm[t]*(   (1 - xm[t]/' G: ~. ]' ~2 N7 [" `
          B)*\[Theta]m*\[CurlyPhi]m*(xm[t]/\[Eta]m[t] - 1) -
3 d  e- C, ?# f+ g3 p( ^       xs[t]/B*\[Theta]s*\[CurlyPhi]s*(xs[t]/(ps*\[Eta]s[t]) - . `# h  j/ a% D: c
          1) ), \[Eta]m'[
" q/ y, J7 @) a' i     t] == \[CurlyPhi]m*
7 h2 V% D- j& i1 G8 {% h      xm[t] - (\[CurlyPhi]m + gRate)*\[Eta]m[t], \[Eta]s'[
# p9 E7 K" ]5 W# X) a8 D1 k. E* r     t] == \[CurlyPhi]s*xs[t]/ps - (\[CurlyPhi]s + gRate)*\[Eta]s[t], 1 T4 P$ }( y" s+ p
   K'[t] == gRate*K[t], hm[t] == \[Eta]m[t]*K[t],
" ]* ]2 @; E4 G! O+ G/ g   hs[t] == \[Eta]s[t]*K[t], # a: r0 ]% V+ Z7 Y
   Sa[t] == (\[Gamma]a^\[Epsilon]*(pa)^(1 - \[Epsilon]))/(\[Gamma]a^\; z2 q( p/ Y, J0 d
\[Epsilon]*pa^(1 - \[Epsilon]) + \[Gamma]m^\[Epsilon]*
0 ?' l/ G: f7 [( l% r       hm[t]^(\[Theta]m*(1 - \[Epsilon])) + \[Gamma]s^\[Epsilon]*(ps*
. N# L  c1 p# t# W1 k5 L; a7 x3 z, j         hs[t]^\[Theta]s)^(1 - \[Epsilon])) + (\[Gamma]m^\[Epsilon]*0 z  S/ e% A! V4 ?, t
      hm[t]^(\[Theta]m*(1 - \[Epsilon]))*pa*1 I) [; ~8 T1 @  ]& g( \
      cap)/((\[Gamma]a^\[Epsilon]*pa^(
: g* \% @$ g  J- W         1 - \[Epsilon]) + \[Gamma]m^\[Epsilon]*
( V/ n; R8 {! T  Y) `9 |         hm[t]^(\[Theta]m*(1 - \[Epsilon])) + \) L5 f0 k, o7 m) g9 O2 l3 h# o
\[Gamma]s^\[Epsilon]*(ps*hs[t]^\[Theta]s)^(1 - \[Epsilon]))*k (t)*
3 _' n& E; e/ U) `" o2 `      xm (t)),
2 D/ l, G! Q! L, D   Sm[t] == (\[Gamma]m^\[Epsilon]*) d3 {5 f2 J2 b
     hm[t]^(\[Theta]m*(1 - \[Epsilon])))/(\[Gamma]a^\[Epsilon]*pa^(
0 F& t/ j. ^# u* I9 V# A  p      1 - \[Epsilon]) + \[Gamma]m^\[Epsilon]*6 ~% a/ m* r! |* R# e1 f
      hm[t]^(\[Theta]m*(1 - \[Epsilon])) + \[Gamma]s^\[Epsilon]*(ps*1 ?: v; K# ?/ r( v
        hs[t]^\[Theta]s)^(1 - \[Epsilon])), $ I$ }9 u& W# |7 p- V, H
   Ss[t] == (\[Gamma]s^\[Epsilon]*(ps*
% f1 q/ `2 e- ]1 `" h% G7 X6 A! K! E        hs[t]^\[Theta]s)^(1 - \[Epsilon]))/(\[Gamma]a^\[Epsilon]*pa^(
' c5 i. G' m6 s       1 - \[Epsilon]) + \[Gamma]m^\[Epsilon]*
) {. u0 r: b" k. h, b0 m       hm[t]^(\[Theta]m*(1 - \[Epsilon])) + \[Gamma]s^\[Epsilon]*(ps*
! ?' i3 j) n8 L         hs[t]^\[Theta]s)^(1 - \[Epsilon])) - (\[Gamma]m^\[Epsilon]*" G: c. G+ ^: T7 R4 f% `
      hm[t]^(\[Theta]m*(1 - \[Epsilon]))*ps*
/ C& ~& w: w7 ?0 O7 `9 K      csp)/((\[Gamma]a^\[Epsilon]*pa^(
- L& y3 z0 M2 @; O) M2 M         1 - \[Epsilon]) + \[Gamma]m^\[Epsilon]*
& K: }; x8 @7 S4 k( n         hm[t]^(\[Theta]m*(1 - \[Epsilon])) + \
$ U7 V5 K5 M( V5 u\[Gamma]s^\[Epsilon]*(ps*hs[t]^\[Theta]s)^(1 - \[Epsilon]))*k (t)*4 S; b; I3 c& v! d1 g6 U
      xm (t)), xm[0] == xm0,
4 p. m1 x* s# D: p$ ~3 L. y) d   xs[0] == xs0, \[Eta]m[0] == \[Eta]m0, \[Eta]s[0] == \[Eta]s0, 9 D$ G6 g( ~5 M0 h: z9 Z
   K[0] == K0}, {xm, xs, \[Eta]m, \[Eta]s, K, hm, hs, Sa, Sm, Ss}, {t,+ [6 h& H3 T* N3 y
    0, TT}]
+ y( ]  a) Y2 A" ZPlot[{Evaluate[Sa[t] /. Sol], Evaluate[Sm[t] /. Sol], ) V. W5 @0 f/ }' D- I; @9 \* q8 M
  Evaluate[Ss[t] /. Sol]}, {t, 0, TT}, AxesOrigin -> {0, 0}, ! c. w3 y" c( n9 d) f. O! Z1 I. P- Y
PlotRange -> {0., 0.8}, PlotStyle -> {Blue, Dashed, Dashing[{0.05}]}]- B; j- f6 D1 R3 w3 N
Plot[{Evaluate[D*Sa[t] /. Sol],
# ~% V+ `) G1 P# Q; n  Evaluate[(D*Sm[t] + (\[Alpha]*(gRate + \[Delta]))/(\[Rho] +
6 g( Q; T! m* c# I       gRate)) /. Sol], Evaluate[D*Ss[t] /. Sol]}, {t, 0, TT}, 0 r/ Z6 i5 P, t
AxesOrigin -> {0, 0}, PlotRange -> {0., 0.8},
% b, \9 Q7 C3 ?( }& ~" C1 R9 ~ PlotStyle -> {Blue, Dashed, Dashing[{0.05}]}]
  z7 p* X6 C. r4 l0 Q# F
: M+ v% D7 u  `# F& }  g' |' w( f8 P

0 h, D+ `, l2 g) a, ?' q) F8 n! W+ \1 V; n
Set::wrsym: Symbol D is Protected.* [* i; U* y! Z2 G5 q+ ^2 }2 g

1 {& }3 d# @5 J$ C( @2 E5 eNDSolve::deqn: Equation or list of equations expected instead of 0.96 (1-6.66667 xs[t]) xs[t] (-0.5 xm[t] (-1+xm[t]/\[Eta]m[t])+0.09 (-1+(2.5 xs[t])/\[Eta]s[t])) in the first argument {0.96 (1-6.66667 xs[t]) xs[t] (-0.5 xm[t] (-1+xm[t]/\[Eta]m[<<1>>])+0.09 (-1+(2.5 xs[t])/\[Eta]s[<<1>>])),<<13>>,K[0]==10.}.1 X. `) C6 y( r# F/ Q0 }
6 B) T/ I( x% H9 Y7 f  a% E

$ i9 e' n' Z5 j4 M! r; L. v9 k  L" B3 D" {% [, @6 ]2 e
# j/ N, b% J$ J2 r+ ]
zan
转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
您需要登录后才可以回帖 登录 | 注册地址

qq
收缩
  • 电话咨询

  • 04714969085
fastpost

关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

手机版|Archiver| |繁體中文 手机客户端  

蒙公网安备 15010502000194号

Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

GMT+8, 2025-10-27 17:21 , Processed in 0.584569 second(s), 49 queries .

回顶部