Clear[Am, As, Aa, \[Alpha], \[Rho], \[Theta]m, \[Theta]s, \ 2 v1 F# ?; z3 k9 b/ C\[CurlyPhi]m, \[CurlyPhi]s, \[Epsilon]] * @' ?0 A6 c) K; d\[Gamma]a = 0.1; \[Gamma]m = 0.15; \[Gamma]s = 9 c8 D5 E& _$ Z$ r N+ j K7 U 1 - \[Gamma]a - \[Gamma]m;' u/ `& o2 \+ ]& J6 {; I" G6 L7 H6 [/ i2 w
\[Epsilon] = 0.04; \[Alpha] = 0.3; \[Rho] = 0.04; 9 s4 f: S6 k7 ~; z' T- z9 \\[Theta]m = 0.75; \[Theta]s = 0.9;3 E# x$ X0 n4 P, p& t
gRate = 0.02;- V2 k! j/ O D6 z
Am = (gRate + \[Rho])/\[Alpha]; Ba = 4; Bm = 1; Bs = 2.5; 9 v2 m+ E4 D3 {2 [ps = Bm/Bs; pa = Bm/Ba; # c U/ W8 o% R" Q\[Delta] = 0.03; ) V5 o$ P' T* IB = \!\(TraditionalForm\`\* " p/ G3 J) u+ ^5 WFractionBox[ $ I& o, I6 c) o* q2 Q8 sRowBox[{. f4 S! @4 C1 L$ {/ [8 u4 @
RowBox[{; w0 D% p* f% L% s s% O
RowBox[{ & K5 |- R& A. K! `% RStyleBox["(",8 z" ~7 |$ n" F4 L: m- X! M7 q
SpanMinSize->1.,3 d. }5 j/ U9 Z) L
SpanMaxSize->1.], & N7 W1 c0 v; Z7 z
RowBox[{"1", "\[Minus]", "\[Alpha]"}], 8 z3 L8 a/ ]* ?6 \. b, o: x/ rStyleBox[")", * f' d- |6 b9 K7 uSpanMinSize->1., ' l' Y0 m6 t) Z- VSpanMaxSize->1.]}], "gRate"}], "+", "\[Rho]"}], : a p" G5 C' D5 `
"\[Alpha]"] \[Minus] \[Delta]\);1 p* q7 V1 B) b1 U
cap = 10; : A. b+ V. k( s+ q; Wcsp = (pa*cap)/ps;4 ~3 B: ~, D2 w( D
D = ((1 \[Minus] \[Alpha])* % B# l: x( P& f6 ] V gRate + \[Rho] - \[Alpha]*\[Delta])/(\[Rho] + gRate); ( N3 Y6 u0 T+ M& d% D% ^\[CurlyPhi]m = 0.1; \[CurlyPhi]s = 0.1;" U; [3 ]% c; t$ ]& Z
Print["*** Initial Values ***"] 6 H2 |# [6 f; ~( V7 RE0 = 1.5;$ Y, a/ V5 N/ @5 p2 b
K0 = E0/B; ) y- C t% M; ` V4 X1 l# q/ Z, |hm0 = 0.25; hs0 = 0.25;(* initial values *)6 n/ e- I }5 U$ G
\[Eta]m0 = hm0/K0; \[Eta]s0 = hs0/K0; & Q4 k* o8 w, Lxm0 = (B*\[Gamma]m^\[Epsilon]* 3 j5 \' W6 @' Z, p9 m' v/ V! ` hm0^(\[Theta]m*(1 - \[Epsilon])))/(\[Gamma]a^\[Epsilon]*pa^( ' I1 E5 Z. |7 [2 l 1 - \[Epsilon]) + \[Gamma]m^\[Epsilon]* w$ h V6 r8 x4 [! ^
hm0^(\[Theta]m*(1 - \[Epsilon])) + \[Gamma]s^\[Epsilon]*(ps*5 Z9 S$ ~9 |: F4 g$ c8 n3 u
hs0^\[Theta]s)^(1 - \[Epsilon])); 3 G# n% d# A4 d6 j, }5 bxs0 = (B*\[Gamma]s^\[Epsilon]*(ps* ) b4 E7 N$ x8 Y9 ^/ [ hs0^\[Theta]s)^(1 - \[Epsilon]))/(\[Gamma]a^\[Epsilon]*pa^(# Q* E% j0 U9 e4 a! _& o6 D
1 - \[Epsilon]) + \[Gamma]m^\[Epsilon]* # r9 ]# F4 K# @ P; ]- R% H/ R5 J hm0^(\[Theta]m*(1 - \[Epsilon])) + \[Gamma]s^\[Epsilon]*(ps*6 A: k0 ?, w2 ^- Z- T, ^
hs0^\[Theta]s)^(1 - \[Epsilon])); $ C8 S# h: y" i$ v# _; yPrint["\[Eta]_{m,0}=" <> ToString[\[Eta]m0], 8 y: j- D- r5 ]7 |! | ", \[Eta]_{s,0}=" <> ToString[\[Eta]s0], " e8 @# e: Q2 E0 n
", x_{m,0}=" <> ToString[xm0], ", x_{s,0}=" <> ToString[xs0]]2 P5 Q4 V! E# D3 q# U/ T
TT = 100;(* end time *)7 O9 O0 ^9 b0 J" I$ F$ k
(* Solve differential equations *) * f# M8 t( Y* P5 R+ a$ h; rSol = NDSolve[{xs'[t] = (1 - \[Epsilon])* 4 A% b9 [- k; [- O xs[t]*( (1 - xs[t]/ $ s7 Z0 Z. q. i9 {) A3 ~4 U B)*(\[Theta]s*\[CurlyPhi]s*(xs[t]/(ps*\[Eta]s[t]) - 1) - ; Z; v! n* [2 H! W1 W2 E
xm[t]/B \[Theta]m*\[CurlyPhi]m*(xm[t]/\[Eta]m[t] - 1))), - h/ a+ d: }3 D$ f$ ?
xm'[t] == (1 - \[Epsilon])* / |1 d9 d( O* [, G1 Y' B9 s" W, q0 J xm[t]*( (1 - xm[t]/7 k1 U; g+ \1 P/ l' `
B)*\[Theta]m*\[CurlyPhi]m*(xm[t]/\[Eta]m[t] - 1) - $ E7 ]) }. e( D
xs[t]/B*\[Theta]s*\[CurlyPhi]s*(xs[t]/(ps*\[Eta]s[t]) - ; F$ Y, z0 _! C& o e! O, K
1) ), \[Eta]m'[ 9 ^% i9 s; w. z( v8 G N" V6 w t] == \[CurlyPhi]m* ]* v) r6 f' T. V" r5 x
xm[t] - (\[CurlyPhi]m + gRate)*\[Eta]m[t], \[Eta]s'[7 G4 d8 Z! b$ N! ?8 v
t] == \[CurlyPhi]s*xs[t]/ps - (\[CurlyPhi]s + gRate)*\[Eta]s[t], 6 Q( [8 e# h4 p* l, G! n, O9 U3 e K'[t] == gRate*K[t], hm[t] == \[Eta]m[t]*K[t], 6 a, L6 `% s4 w+ R+ G# G9 T! h# h
hs[t] == \[Eta]s[t]*K[t], & s8 a4 _1 D3 } Sa[t] == (\[Gamma]a^\[Epsilon]*(pa)^(1 - \[Epsilon]))/(\[Gamma]a^\8 V9 j P. U" _2 N, U
\[Epsilon]*pa^(1 - \[Epsilon]) + \[Gamma]m^\[Epsilon]*/ I/ z- ~* v j/ r5 F! r
hm[t]^(\[Theta]m*(1 - \[Epsilon])) + \[Gamma]s^\[Epsilon]*(ps* 9 e! H$ U1 V* l$ l% ~& k hs[t]^\[Theta]s)^(1 - \[Epsilon])) + (\[Gamma]m^\[Epsilon]* : k* p! ~4 K1 s+ \+ c) i hm[t]^(\[Theta]m*(1 - \[Epsilon]))*pa* - g z+ R6 C0 A" V; X; L6 c# t cap)/((\[Gamma]a^\[Epsilon]*pa^(' m) @. t8 W. f9 W& k& ~4 l" j
1 - \[Epsilon]) + \[Gamma]m^\[Epsilon]*/ F, ]: U; o& o2 a" A0 H9 N0 S
hm[t]^(\[Theta]m*(1 - \[Epsilon])) + \ $ D+ c( o4 }1 Y# s" K\[Gamma]s^\[Epsilon]*(ps*hs[t]^\[Theta]s)^(1 - \[Epsilon]))*k (t)*/ t( R1 ]% z2 S1 p+ H0 l
xm (t)), , E7 O3 A% |, k" l& p
Sm[t] == (\[Gamma]m^\[Epsilon]* ( _ f6 `3 B5 W- T, B' g( m hm[t]^(\[Theta]m*(1 - \[Epsilon])))/(\[Gamma]a^\[Epsilon]*pa^( * j+ p& K/ E6 ^3 O, W) T 1 - \[Epsilon]) + \[Gamma]m^\[Epsilon]* ! A" X3 E+ Z* o1 h; J: ^ X; R+ g hm[t]^(\[Theta]m*(1 - \[Epsilon])) + \[Gamma]s^\[Epsilon]*(ps* - O. Y; O( \6 { hs[t]^\[Theta]s)^(1 - \[Epsilon])), & x; F E. L X d6 b
Ss[t] == (\[Gamma]s^\[Epsilon]*(ps*5 N* V$ \1 W1 P4 P5 H
hs[t]^\[Theta]s)^(1 - \[Epsilon]))/(\[Gamma]a^\[Epsilon]*pa^(. o5 |! c$ V c5 V1 E; v4 v
1 - \[Epsilon]) + \[Gamma]m^\[Epsilon]* . E/ a; I& ^; O, g hm[t]^(\[Theta]m*(1 - \[Epsilon])) + \[Gamma]s^\[Epsilon]*(ps*& ]4 }4 B) K4 ]; M6 j& } J- A
hs[t]^\[Theta]s)^(1 - \[Epsilon])) - (\[Gamma]m^\[Epsilon]*5 g6 R% K+ y0 n$ ?
hm[t]^(\[Theta]m*(1 - \[Epsilon]))*ps* 4 U% a/ ]' C) q% u, x1 e. V) { csp)/((\[Gamma]a^\[Epsilon]*pa^( . c: ^$ G: C/ k5 i 1 - \[Epsilon]) + \[Gamma]m^\[Epsilon]*! r. O0 O, I1 n( z
hm[t]^(\[Theta]m*(1 - \[Epsilon])) + \% X6 b" j$ i9 u }& x
\[Gamma]s^\[Epsilon]*(ps*hs[t]^\[Theta]s)^(1 - \[Epsilon]))*k (t)* I2 l' c+ M0 F P# R y' Z xm (t)), xm[0] == xm0, " L7 y( u+ m7 w- \: \ xs[0] == xs0, \[Eta]m[0] == \[Eta]m0, \[Eta]s[0] == \[Eta]s0, K% r: R, S) C+ P8 C+ |# Q
K[0] == K0}, {xm, xs, \[Eta]m, \[Eta]s, K, hm, hs, Sa, Sm, Ss}, {t,# v7 Z& ~2 {( ?6 K0 J* u* s" _
0, TT}] ; q+ s& p) M$ w* V' N# v l1 B: m5 E7 h% S1 JPlot[{Evaluate[Sa[t] /. Sol], Evaluate[Sm[t] /. Sol], . n6 @" m# k" B6 v% T
Evaluate[Ss[t] /. Sol]}, {t, 0, TT}, AxesOrigin -> {0, 0}, : \; |& l2 y2 `6 O; B! l
PlotRange -> {0., 0.8}, PlotStyle -> {Blue, Dashed, Dashing[{0.05}]}] . u$ `, X. F- N/ M, m4 y BPlot[{Evaluate[D*Sa[t] /. Sol], {* ^0 B" j" j* Y Evaluate[(D*Sm[t] + (\[Alpha]*(gRate + \[Delta]))/(\[Rho] + 8 K N. B# n7 Z. {" y gRate)) /. Sol], Evaluate[D*Ss[t] /. Sol]}, {t, 0, TT}, $ x5 l5 _4 e, y- \: o2 d* ?
AxesOrigin -> {0, 0}, PlotRange -> {0., 0.8}, 0 \- b! G9 J( K; `* h8 h4 Y PlotStyle -> {Blue, Dashed, Dashing[{0.05}]}] " }6 l' _0 ^# M' X B: X2 q" @& Z- B6 b$ C1 D% _1 E5 n9 F
2 {& Q, l& ]' r8 t0 P" z
6 r% j7 k7 p* ^* I* X( P, h7 _& a }3 q. p8 K- j. X- `8 k" M; R& K8 @
Set::wrsym: Symbol D is Protected./ Z8 C! L$ l& ]% ]( k, s' [! e2 X8 r
6 D. _6 t/ P5 ^ t2 V
NDSolve::deqn: Equation or list of equations expected instead of 0.96 (1-6.66667 xs[t]) xs[t] (-0.5 xm[t] (-1+xm[t]/\[Eta]m[t])+0.09 (-1+(2.5 xs[t])/\[Eta]s[t])) in the first argument {0.96 (1-6.66667 xs[t]) xs[t] (-0.5 xm[t] (-1+xm[t]/\[Eta]m[<<1>>])+0.09 (-1+(2.5 xs[t])/\[Eta]s[<<1>>])),<<13>>,K[0]==10.}.4 B* E( f4 n. @! i
' a. n7 E# Z" B 0 g+ ]: s. Y- u" w6 ]& o9 A( q( R' p4 R/ Z0 t
$ |/ _( y2 g6 V" J