- 在线时间
- 0 小时
- 最后登录
- 2008-3-17
- 注册时间
- 2008-3-17
- 听众数
- 0
- 收听数
- 0
- 能力
- 0 分
- 体力
- 20 点
- 威望
- 0 点
- 阅读权限
- 20
- 积分
- 8
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 3
- 主题
- 3
- 精华
- 0
- 分享
- 0
- 好友
- 0
升级   3.16% 该用户从未签到
 |
我现在有一个问题寻求帮助和合作论文。 6 f2 c" }/ O. n( g4 u9 k
是这样的,我想要分析的是y 和x
$ J8 Y8 m) m( W, D( [( S的关系(见附件),但是x和y好像是没有关系;然而,x和sum-y(就是y的累加)相关性却相当高(0.999),根据由Excel得到的回归方程,回
* C: y- O R( q; ~) `- b归的sum-y与实测的sum-y误差也很小,但是回归的y
5 t$ J3 [$ a7 ]" `9 t) E值(由回归的第n个sum-y减去实测的第n-1个sum-y得到)与原值就误差很大。我想请教一下,为什么会出现这个问题?能否通过数学方法来解决这个
. |2 M3 Z% j9 i+ E; s9 U- ~问题(就是使回归的y值与原值误差尽量小)? 此问题如果能够较好解决,可以合作发表数篇SCI文章。 Email: shangbinx@163.com
xySum-ykb回归Sum-y回归yy误差Sum-y误差 818.2991304318.2991304314.426-107.378.04 8.04 56.07 -56.07 98.28420289926.5833333314.426-107.3722.46 4.16 49.73 -15.50 1013.0194202939.6027536214.426-107.3736.89 10.31 20.84 -6.85 1110.7163768150.3191304314.426-107.3751.32 11.71 -9.30 1.98 1216.8469565267.1660869614.426-107.3765.74 15.42 8.45 -2.12 1318.3817391385.5478260914.426-107.3780.17 13.00 29.27 -6.29 1415.61869565101.166521714.426-107.3794.59 9.05 42.08 -6.50 1516.06550725117.23202914.426-107.37109.02 7.85 51.12 -7.00 168.746086957125.978115914.426-107.37123.45 6.21 28.95 -2.01 1713.05043478139.028550714.426-107.37137.87 11.89 8.86 -0.83 1816.7973913155.82594214.426-107.37152.30 13.27 21.00 -2.26 1918.08942029173.915362314.426-107.37166.72 10.90 39.75 -4.13 2012.67884058186.594202914.426-107.37181.15 7.23 42.94 -2.92 2114.95057971201.544782614.426-107.37195.58 8.98 39.92 -2.96 227.70826087209.253043514.426-107.37210.00 8.46 -9.72 0.36 2315.15101449224.40405814.426-107.37224.43 15.17 -0.16 0.01 249.017536232233.421594214.426-107.37238.85 14.45 -60.24 2.33 2515.5173913248.938985514.426-107.37253.28 19.86 -27.98 1.74 269.612898551258.551884114.426-107.37267.71 18.77 -95.23 3.54 2711.43463768269.986521714.426-107.37282.13 23.58 -106.22 4.50 289.68057971279.667101414.426-107.37296.56 26.57 -174.48 6.04 2915.69695652295.36405814.426-107.37310.98 31.32 -99.51 5.29 3023.96057971319.324637714.426-107.37325.41 30.05 -25.40 1.91 3111.25275362330.577391314.426-107.37339.84 20.51 -82.28 2.80 3217.30521739347.882608714.426-107.37354.26 23.68 -36.86 1.83 3320.73057971368.613188414.426-107.37368.69 20.81 -0.36 0.02 3414.03101449382.644202914.426-107.37383.11 14.50 -3.35 0.12 3511.49144928394.135652214.426-107.37397.54 14.90 -29.63 0.86 3613.13927536407.274927514.426-107.37411.97 17.83 -35.70 1.15 3717.4126087424.687536214.426-107.37426.39 19.12 -9.79 0.40 3812.16971014436.857246414.426-107.37440.82 16.13 -32.55 0.91 3917.73463768454.591884114.426-107.37455.24 18.39 -3.68 0.14 4012.85086957467.442753614.426-107.37469.67 15.08 -17.33 0.48 4116.75014493484.192898614.426-107.37484.10 16.65 0.58 -0.02 4212.93797101497.130869614.426-107.37498.52 14.33 -10.75 0.28 4313.13869565510.269565214.426-107.37512.95 15.82 -20.39 0.52 4413.86507246524.134637714.426-107.37527.37 17.10 -23.36 0.62 4514.03391304538.168550714.426-107.37541.80 17.67 -25.88 0.67 4621.87521739560.043768114.426-107.37556.23 18.06 17.45 -0.68 4714.13927536574.183043514.426-107.37570.65 10.61 24.97 -0.61 4818.02391304592.206956514.426-107.37585.08 10.89 39.55 -1.20 4911.22318841603.430144914.426-107.37599.50 7.30 34.98 -0.65 5016.23086957619.661014514.426-107.37613.93 10.50 35.31 -0.92 519.766666667629.427681214.426-107.37628.36 8.69 10.97 -0.17 5214.02217391643.449855114.426-107.37642.78 13.35 4.76 -0.10 5315.70492754659.154782614.426-107.37657.21 13.76 12.40 -0.30 5417.80811594676.962898614.426-107.37671.63 12.48 29.92 -0.79 5519.51333333696.476231914.426-107.37686.06 9.10 53.38 -1.50 5610.46217391706.938405814.426-107.37700.49 4.01 61.67 -0.91 |
zan
|