- 在线时间
- 0 小时
- 最后登录
- 2011-10-7
- 注册时间
- 2010-9-1
- 听众数
- 3
- 收听数
- 0
- 能力
- 0 分
- 体力
- 31 点
- 威望
- 0 点
- 阅读权限
- 20
- 积分
- 13
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 11
- 主题
- 4
- 精华
- 0
- 分享
- 0
- 好友
- 1
升级   8.42% 该用户从未签到
 |
P=[0.1093,0.1110,0.1127,0.1141,0.1154,0.1164,0.1171,0.1175,0.1178,0.1179,0.1179,0.1179,0.1179,0.1180,0.1182];
! N) q- f# v& }) V! }& fT=[0.1110,0.1127,0.1141,0.1154,0.1164,0.1171,0.1175,0.1178,0.1179,0.1179,0.1179,0.1179,0.1180,0.1182,0.1185];1 R& {0 Q$ j/ l# C2 t U! n
% 创建一个新的前向神经网络 e( A# V% @6 v' ]
net_1=newff(minmax(P),[10,1],{'tansig','purelin'},'traingdm')
) K$ W7 u/ }/ M P F* X% 当前输入层权值和阈值
) c4 o0 _3 j9 |7 R3 FinputWeights=net_1.IW{1,1}6 K K& I0 ?4 H k$ B( W3 o
inputbias=net_1.b{1}
0 F$ N& L* Q# j% 当前网络层权值和阈值& E- C# K8 H( X0 v
layerWeights=net_1.LW{2,1}
6 W8 i1 ~$ e0 r0 Blayerbias=net_1.b{2}4 r9 v7 v$ e, Z; H% C. t6 c
% 设置训练参数
! K7 U+ I' @! Ynet_1.trainParam.show = 50;
C, T- q% m3 P; knet_1.trainParam.lr = 0.05;
- e0 a. F# x+ y5 D. ~net_1.trainParam.mc = 0.9;
% Y3 r9 d3 W8 I+ S9 x9 D/ Ynet_1.trainParam.epochs = 10000;
% K% v. s6 K: N) o6 Q" \/ L, Pnet_1.trainParam.goal = 1e-3;
k7 @, x& s4 x3 {% 调用 TRAINGDM 算法训练 BP 网络
- a' y5 B! }0 I" _) @* {$ g[net_1,tr]=train(net_1,P,T);
, [& b) i( k+ k9 u- @ _% 对 BP 网络进行仿真/ I) y6 p X+ ?8 E1 e7 e+ l" a
A = sim(net_1,P);- P) L" X$ {' `4 ?. B
% 计算仿真误差 % f5 [" j! d7 \+ H- }! ~
E = T - A;( v0 m& a. k1 e t! G8 {
MSE=mse(E)
1 [8 j" \6 s" @. A6 ^( ^5 S/ Lx=[0.1110,0.1127,0.1141,0.1154,0.1164,0.1171,0.1175,0.1178,0.1179,0.1179,0.1179,0.1179,0.1180,0.1182,0.1185]';%测试4 p5 D, i! |! L
sim(net_1,x)
3 Q3 l) s. z+ c) U4 k9 r2 U4 |这段程序是根据14年的数据,来预测下一年的,怎么算不出来啊 。 w" L7 O8 J2 y9 i1 l: k: O
|
zan
|