QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 2791|回复: 9
打印 上一主题 下一主题

虚二次域例两(-5/50)

[复制链接]
字体大小: 正常 放大
lilianjie        

43

主题

4

听众

204

积分

升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    跳转到指定楼层
    1#
    发表于 2012-1-4 17:41 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    本帖最后由 lilianjie 于 2012-1-4 17:54 编辑 0 Q- m# n9 E7 A* t  A2 p

    0 F' B! y* M# \! |Q5:=QuadraticField(-5) ;
    % I( l0 ?/ }5 x( o7 Y  XQ5;
    / R6 u6 |' }3 S6 V) T
    + A: _+ u. n5 MQ<w> :=PolynomialRing(Q5);Q;
    6 ^+ @) `; L+ A$ q, g7 w8 eEquationOrder(Q5);
    2 T% |0 m/ a' s) _: ?+ t$ A, ]9 @8 EM:=MaximalOrder(Q5) ;
    + ?6 j" w  h1 ]0 e* j3 ]& M% {! o- uM;# u) r( Q# q/ j# z
    NumberField(M);
    8 [! b% v4 H# @5 Z+ i/ i6 N- ^S1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;
    7 k9 W2 r% Z6 N+ @2 ]IsQuadratic(Q5);3 i% ?: ^# e# T
    IsQuadratic(S1);# {* k' ?# f: ~: D3 N2 e6 `
    IsQuadratic(S4);6 b3 A: I7 U% H
    IsQuadratic(S25);
    ' q1 M0 R) z7 W, ~% `+ dIsQuadratic(S625888888);( Z0 ^) l  t) S: g8 h
    Factorization(w^2+5);  , p: k; U, z- B. |$ n# [) H$ f8 L& S6 Y2 {
    Discriminant(Q5) ;
    * f6 \; ~3 g1 ]+ ]2 BFundamentalUnit(Q5) ;
    & k/ G! Z) s! D+ d  d& F  d7 LFundamentalUnit(M);1 }- e6 Q$ }1 i/ C8 Z+ s7 J4 v5 M
    Conductor(Q5) ;, D- Q+ ~7 ^" s& n
    ! I1 U6 N0 {1 Q( S1 Z) H
    Name(M, -5);
    / \. U' s( T2 a$ nConductor(M);6 R) U8 D: e1 k& t- v: U
    ClassGroup(Q5) ; : c5 |' t! n1 W# m, c
    ClassGroup(M);
    ! ]' B  o& e9 c  V. O' U- sClassNumber(Q5) ;1 q/ X% j) K7 s
    ClassNumber(M) ;
    5 s3 F$ b$ L/ n  y; w6 Y/ YPicardGroup(M) ;
    / }; c/ \6 |& \0 F; e, @. ^4 n3 V5 B% tPicardNumber(M) ;3 n& Q- C1 S* }# ?( v. B

    0 w% I( Y0 \3 ?1 O+ k6 f6 uQuadraticClassGroupTwoPart(Q5);% ~) U$ S2 f" p+ c, o2 u
    QuadraticClassGroupTwoPart(M);' Y# G; }, L! a, ]$ _
    NormEquation(Q5, -5) ;
    . R6 t" w- o$ g. L8 B6 |NormEquation(M, -5) ;4 K' _; w9 ~" p: Z; A
    Quadratic Field with defining polynomial $.1^2 + 5 over the Rational Field. Q& F! b' X1 U4 T" k
    Univariate Polynomial Ring in w over Q5+ H! ]8 y) Q& s, A, ~* M
    Equation Order of conductor 1 in Q55 x1 p+ s- B9 l9 X" _& y
    Maximal Equation Order of Q58 g* k7 F4 r0 i4 \% r
    Quadratic Field with defining polynomial $.1^2 + 5 over the Rational Field
    3 E! [. l; r+ ^2 n% w$ u" v6 b; ?Order of conductor 625888888 in Q51 ?. U. Y) D" M/ `+ D6 e! q
    true Quadratic Field with defining polynomial $.1^2 + 5 over the Rational Field+ Q' Y  z5 u9 J8 x( \) p
    true Maximal Equation Order of Q58 A! v( W2 J/ u) g
    true Order of conductor 1 in Q5  V) q7 q" x6 n- \3 p
    true Order of conductor 1 in Q5* ~7 b9 s3 u1 |. K2 {9 n( D
    true Order of conductor 1 in Q5
    4 {) J+ `& G0 u: u1 B[
    - N4 S% D* ?2 l; g) _8 R    <w - Q5.1, 1>,
    6 z  \. Y% M, l( H7 ~6 x2 b% Y    <w + Q5.1, 1>* D2 l  W5 Q% |2 E. o* g8 Y! J
    ]* E% k  W0 f" y8 r5 n; A2 Q
    -20
    # L( C% F: z4 G9 V1 S3 X
    ' s! p- a6 T  T- s! N5 G  g' y>> FundamentalUnit(Q5) ;$ ]  Z# ^+ F# }! p: s6 x9 S( |6 M
                      ^- k: X7 o6 A( Q2 P7 p) U8 {
    Runtime error in 'FundamentalUnit': Field must have positive discriminant
    5 j+ d: z  n0 t4 k. b+ m, p1 ?. C& k( |' m* `" T* ^/ f6 B
    5 l1 z& C% h" @: s3 P
    >> FundamentalUnit(M);3 A3 i; N$ H5 M" H* \/ V! `7 T. ~
                      ^: H. W1 ], g- e* x
    Runtime error in 'FundamentalUnit': Field must have positive discriminant3 A" g. u0 @+ @1 ]
    / i/ N8 L% f! L; I/ n9 ~" f
    20
    : m2 F! H! ]7 J" o1 J  W0 U$ _* b0 Z/ `9 \- s6 D+ Z5 k5 S% {4 @
    >> Name(M, -5);' m$ K/ ~, A2 i4 B  J
           ^" V$ Z2 s- r7 f: o4 u, n
    Runtime error in 'Name': Argument 2 (-5) should be in the range [1 .. 1]/ g; {" e' X, p! [! W; X2 E5 j
    ' T9 I1 C# Y# x# k! X5 K
    11 C( v- S8 g( l
    Abelian Group isomorphic to Z/2! Q% R- F& Z9 H% |
    Defined on 1 generator
    $ a/ d% O, V2 S$ f1 KRelations:; S# w+ P( |2 |% e/ _/ P! m  }
        2*$.1 = 0) t; u& ]; |" }8 O: P, N, I
    Mapping from: Abelian Group isomorphic to Z/2- X! [: n; ?6 p7 ]" \
    Defined on 1 generator) \5 u( g% c3 d, j1 H
    Relations:
    % z! i+ g5 D+ j+ M' E8 i) Y* q    2*$.1 = 0 to Set of ideals of M
    4 T8 j  y% ?: t" c( B. uAbelian Group isomorphic to Z/2
    1 B' k6 K0 o4 z1 ~" h3 @Defined on 1 generator; V- q+ [$ Q8 U# w/ }- A
    Relations:
    9 u! i2 Z: R( f0 A) S4 K9 j* v7 _    2*$.1 = 0
    8 M, S4 s0 s% c; j- xMapping from: Abelian Group isomorphic to Z/2
    * E6 I% n- H, WDefined on 1 generator3 g  _2 c5 J  y& D; ]/ Q
    Relations:
    0 {& U0 S# b2 u- x- Q" Q    2*$.1 = 0 to Set of ideals of M- u, G# P1 A/ G( Q
    2
    & u% O0 k# q2 `9 E6 ^% d* N23 U" H( h  k' W# k: Z6 d
    Abelian Group isomorphic to Z/2
    * ~: U2 \3 i' S# K: y. lDefined on 1 generator. ]/ `$ ?! ?8 j
    Relations:2 H) {4 P) ?4 W( R% a2 t
        2*$.1 = 0
    , A5 r, K+ I; O. n: ?2 iMapping from: Abelian Group isomorphic to Z/2$ _, w0 q' s! t: G1 w& m6 y$ m
    Defined on 1 generator
    : k7 D: S9 U7 J- f. c  ARelations:
    ( z( v8 c3 u" x) A    2*$.1 = 0 to Set of ideals of M given by a rule [no inverse]
    1 l( _9 e# R4 b0 I6 S2' i3 `$ M+ p- d, a, m
    Abelian Group isomorphic to Z/2
      y& s9 C2 S2 ^! ]3 ?Defined on 1 generator$ Z8 P! \- H+ ]- ~; @
    Relations:
    % d* v* \+ g. X) Y4 h1 d7 r    2*$.1 = 02 S- [( l$ p8 d/ e, u6 d
    Mapping from: Abelian Group isomorphic to Z/2
    9 ]8 r9 J& F5 x, m8 c9 WDefined on 1 generator* t" |! U5 u) ^% N' [
    Relations:
    ; Y- B# I; p7 o/ Z2 \+ H: X    2*$.1 = 0 to Binary quadratic forms of discriminant -20 given by a rule [no
    : K6 a2 e) c0 a: x( }* o4 minverse]
    " `( `6 R8 r% A0 v/ W2 G# kAbelian Group isomorphic to Z/2
    . y4 Y. Y6 E+ k4 KDefined on 1 generator0 z0 b$ P; h$ d$ @0 ?" S5 Y" z
    Relations:( {8 j% X" T; v) F4 x
        2*$.1 = 0
    4 p' \2 i* x2 {) jMapping from: Abelian Group isomorphic to Z/2! d, Q! {. A) K! V* Z: r* V
    Defined on 1 generator
    3 ?% Q( L, Q+ f' y+ FRelations:
    ) M9 y+ {6 y. d7 z; J; ?+ M    2*$.1 = 0 to Binary quadratic forms of discriminant -20 given by a rule [no   {. u" w+ ]- `5 U( k
    inverse]
      R3 l  u4 N& ?& ifalse9 q) h: E$ I4 J. ]6 o; c* J
    false* I7 c! C: j3 c& s. J
    ==============
      h: ^' b! t# |' S# D; V- S$ l0 N- B- I5 J+ b9 k
    ( ?# M; r; l% b" b, \
    Q5:=QuadraticField(-50) ;* M" U' ]8 w3 T: R" ?: D* T
    Q5;
    ! D9 R: I5 z# X1 O) V6 B* o8 e3 v$ P% E5 P9 v0 ]" A
    Q<w> :=PolynomialRing(Q5);Q;
    8 i2 H* a+ L' f8 ~# D# BEquationOrder(Q5);- j9 P- @$ ]: u( ]8 A; P
    M:=MaximalOrder(Q5) ;7 e% Z! M$ u0 H. Q5 X
    M;! K2 u/ n( Y+ ~5 i
    NumberField(M);
    9 o& m  \1 S! E8 x/ {$ e& Y+ S* k7 JS1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;% o( w' ]9 {- d. ~  \  |1 C
    IsQuadratic(Q5);
    9 R  R( N1 D! u4 N) bIsQuadratic(S1);0 D( Z$ V3 t5 w  N! ~, F. B# }; E, ^
    IsQuadratic(S4);# G1 J" P# R5 I" ~
    IsQuadratic(S25);
    & J3 @' E& _% y0 j# r: f* t2 `IsQuadratic(S625888888);) u  v( j7 {& D7 n6 H* j: F
    Factorization(w^2+50);  
    ' V# Q; U* q: q4 LDiscriminant(Q5) ;
    8 s7 |* W) Y* N( b' {FundamentalUnit(Q5) ;# i" Q+ k- F2 [4 Q% |$ r
    FundamentalUnit(M);
    ( h  }% O7 |/ C$ G1 ]Conductor(Q5) ;
    5 _8 w% j( b, y9 l
    ' x# x' A" b+ _3 C8 [Name(M, -50);
    - Q+ a$ f. H3 e2 b) mConductor(M);+ ]2 I5 a: g, C! f% x8 K& a
    ClassGroup(Q5) ; , U! f# D3 p9 N$ I! F
    ClassGroup(M);, e/ L6 ]) h- W& r8 v5 d" u, S
    ClassNumber(Q5) ;1 X( N. R3 C; H/ s
    ClassNumber(M) ;9 D; f1 J( q% T
    PicardGroup(M) ;
    ( R% e/ S- Q+ \0 r( z) WPicardNumber(M) ;+ j9 P$ W- n# t9 G; R
    - v) U% }: i. s- m" T- ?2 }
    QuadraticClassGroupTwoPart(Q5);% j  n2 }8 U  n# N  M# O" X& G% n* W0 f
    QuadraticClassGroupTwoPart(M);
    / G9 L( @$ U8 g( Y0 B; a' j' gNormEquation(Q5, -50) ;7 ?0 ^5 k, B! j3 u1 V" n5 r
    NormEquation(M, -50) ;
    & n( U# L  R- f1 S/ `" J  Z7 X! u  N; n+ b/ M$ ]7 S6 |
    Quadratic Field with defining polynomial $.1^2 + 2 over the Rational Field
    6 t: w! H* p# d8 V2 G% TUnivariate Polynomial Ring in w over Q5
    6 i9 I5 W" C, O% xEquation Order of conductor 1 in Q5( Z. I# }; z- u. B/ L
    Maximal Equation Order of Q5
    ! j3 q: V9 j. h0 jQuadratic Field with defining polynomial $.1^2 + 2 over the Rational Field
    + l7 K0 L% F: C5 iOrder of conductor 625888888 in Q5
    9 _9 O4 ?7 ]1 y, U  g! Z# {3 \true Quadratic Field with defining polynomial $.1^2 + 2 over the Rational Field
    2 [5 y5 t; h0 q' T/ k4 I. r5 ctrue Maximal Equation Order of Q57 v/ q6 V" L; b% p! b9 m: H) s, E
    true Order of conductor 1 in Q5
    ' F4 a( }( G% j% E. Strue Order of conductor 1 in Q5
      f  Z7 c& j" w' h/ ptrue Order of conductor 1 in Q5: Y  J7 ^' \! S* w2 }
    [
    . d( p2 J  H4 N& A5 |- s. h    <w - 5*Q5.1, 1>,
    * A' o3 g3 g- ?" I; J% a) G    <w + 5*Q5.1, 1>7 L# {& U. j5 k# m9 L3 V
    ]' ?, u8 R8 G5 D/ u
    -8
    $ X/ A! A' l" D6 F0 P9 D3 w2 I0 R
    $ j5 e7 d0 q/ J  K. X* P( F>> FundamentalUnit(Q5) ;
    3 w5 c, e! Q! m0 I                  ^
    8 Q/ I& \! c3 Z& A& ZRuntime error in 'FundamentalUnit': Field must have positive discriminant
    ) n% O, G7 K/ r5 _7 A6 {) I4 i6 [2 Z3 }3 x0 s6 W0 M* n$ X

    ; v4 Q1 ?' H: e2 X) E/ r! D3 @4 t>> FundamentalUnit(M);* R: {2 e% ]( B; X0 T/ A
                      ^
      ]5 k9 e+ \' F- A1 j! Z% R- yRuntime error in 'FundamentalUnit': Field must have positive discriminant
    7 i8 v, }' N4 }+ x' u
    $ N: ~2 z3 F' _; i/ ~& Y8+ c+ b+ T* }0 X2 a; g

    * n6 k& L) t! q# r1 D7 F, I! C* l0 L>> Name(M, -50);
    . H2 P6 V: T" o8 c4 L       ^
    ! g" u; H/ q6 f, E0 o' rRuntime error in 'Name': Argument 2 (-50) should be in the range [1 .. 1], \9 h  E1 ]2 q2 }; I! D/ C

    # n' d5 T  }. l% `1
    $ C% A; c/ ^' g( Q' u) j" U. b9 [Abelian Group of order 1
    . Q9 R+ b) s( p' v* j1 M+ o: jMapping from: Abelian Group of order 1 to Set of ideals of M
    ' R/ y7 F6 E: uAbelian Group of order 1- s0 r0 Z5 }: j" \$ W9 `
    Mapping from: Abelian Group of order 1 to Set of ideals of M, e9 P; y& i8 x" M8 i3 R
    1
    # V; N( o' J3 t: @0 m- T1
    1 i( [8 ]$ m* @& r9 MAbelian Group of order 1
    " `0 h7 p0 H/ |3 a7 MMapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no, Q* |! T, k( [; _$ g; s3 _: f
    inverse]
    ) W: g& p+ r0 Q1 `+ d10 a: T  t0 L8 I. c: t  T
    Abelian Group of order 1: P6 S. n! Y% e/ h& @
    Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant% b+ ]7 y1 T2 Z( b6 P3 w
    -8 given by a rule [no inverse]8 f' ~7 A, ]6 e' x- |/ h
    Abelian Group of order 1: w8 x  j& l0 j8 s! g
    Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant
    * Q2 _" N# I) v3 D- |% D& U3 x-8 given by a rule [no inverse]
    6 x- a; O  a  H  H$ Z$ ofalse
    - I0 u9 X" B8 B$ \false
    ; p* d; P6 Q5 ]/ a& y
    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    看看-1.-3的两种:
    + c, y4 `: e/ m1 z5 d: o( H+ l, u6 K# m5 U" _+ k
    Q5:=QuadraticField(-1) ;
    & j+ J  r) u$ [# p8 R. sQ5;) W2 a4 e& S7 l8 l& F* `

    3 K7 b- t2 V# u4 z$ i9 lQ<w> :=PolynomialRing(Q5);Q;
    4 R, B: \7 r9 x0 _+ REquationOrder(Q5);
    ( t  d1 U+ M% b0 b' T4 [) B4 rM:=MaximalOrder(Q5) ;
    6 Y& B+ {2 X& `4 m5 Y" M7 b/ dM;
    ( j: X* t5 `/ z8 m, I$ Q# f# nNumberField(M);
    * G$ V! n# S8 H) u- h. {" e9 WS1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;( `% M* {, D  n! M& B7 m) Z( ]
    IsQuadratic(Q5);  n; G0 l% M! ^# z& ~; b* o
    IsQuadratic(S1);% Z8 h. p4 L% r' v& E- a' I
    IsQuadratic(S4);0 U" I& a& L9 t2 G! v1 k
    IsQuadratic(S25);0 q) H' ^. n( z# E* p5 y3 J* }- i
    IsQuadratic(S625888888);  R& d0 c  L/ e. ^( H/ R
    Factorization(w^2+1);  
    9 W4 a, v9 i5 F/ n* q, l. sDiscriminant(Q5) ;
    " u0 F" r4 O' j( _FundamentalUnit(Q5) ;5 P/ L8 Z) ?! m# n7 _* w% {. t( P
    FundamentalUnit(M);7 C( O9 Q! f9 D0 }
    Conductor(Q5) ;1 f) ~$ g! c- Y) G6 |# ?
    7 C2 v* O( t/ m: n1 B
    Name(M, -1);- B9 z1 W7 \3 A+ E3 i& j3 ~: |
    Conductor(M);% A8 g, h% D5 g' E" y' c
    ClassGroup(Q5) ; . L1 b$ Z* g' A: e! N4 O, w& T! B; l
    ClassGroup(M);
    * j+ o1 o! S2 p# h( ]8 V% tClassNumber(Q5) ;
    3 _9 c2 }- \& \) u! B2 }ClassNumber(M) ;
    1 g- S/ I' X" Q: }: C* a! b' }PicardGroup(M) ;
      d# Z$ E6 |$ u4 pPicardNumber(M) ;9 ~. N4 Z; v& Y0 M& A

    $ c) T8 e7 x5 [+ c3 k2 ?" }8 ^$ ~QuadraticClassGroupTwoPart(Q5);
    . X8 F9 s6 l6 [1 g. T) _1 s4 [QuadraticClassGroupTwoPart(M);5 [: j6 K5 T$ _! |
    NormEquation(Q5, -1) ;3 a0 b6 O: e9 t7 E. Y- q8 D! \
    NormEquation(M, -1) ;
    - l7 N; u# [0 K* b1 [. |
    8 y; e! Q! G$ x  j4 AQuadratic Field with defining polynomial $.1^2 + 1 over the Rational Field2 g. O1 q7 ^7 z. d. M1 e8 a3 v  V4 ^
    Univariate Polynomial Ring in w over Q5
    ; X- u5 E5 T* n6 e/ R. h1 v& f" eEquation Order of conductor 1 in Q5
    / B9 [; ~/ V  t  `, J+ ]4 vMaximal Equation Order of Q5& @! R1 j& }: |$ o
    Quadratic Field with defining polynomial $.1^2 + 1 over the Rational Field( Y3 }* E0 w# v( I$ d& M
    Order of conductor 625888888 in Q5
    % b2 |/ ~! ]( y7 Htrue Quadratic Field with defining polynomial $.1^2 + 1 over the Rational Field2 k% g! ]9 S$ l  \. b* O
    true Maximal Equation Order of Q50 {$ h) s/ [; P4 \& N% e$ h9 d
    true Order of conductor 1 in Q5
    6 |6 {" D2 N3 Y' H# u8 Ktrue Order of conductor 1 in Q5
      ]0 N; ~# D7 ?1 Itrue Order of conductor 1 in Q5
    % M0 q8 B$ A1 q4 _& K* T[6 s. q4 u3 \7 A  u6 i8 t$ x
        <w - Q5.1, 1>,
    2 M. F+ h/ ^& s    <w + Q5.1, 1>5 l# V, z* H+ n0 h7 Q+ N+ Z$ |
    ]8 B! V% y+ |+ q. ~- w, Z" w. ~: f1 L' ?
    -4
    6 k; `! B8 O, Z  b9 x$ t+ p
    / @3 c. ]' @& ?" M>> FundamentalUnit(Q5) ;6 n/ u4 Q% ]1 }: [: m
                      ^" ~' R, G" G* f  Y
    Runtime error in 'FundamentalUnit': Field must have positive discriminant
    . V* P$ G8 P4 c- @) Z; D$ L9 W
    5 ^' w5 |2 M% O0 y$ t/ C5 X$ @$ G
    >> FundamentalUnit(M);8 [7 K1 `+ R# l* J- Q) `7 o
                      ^; x  O: F$ |- J" u; g- q
    Runtime error in 'FundamentalUnit': Field must have positive discriminant/ K: D/ G- f& ?, I! V+ S( S
    ' O1 G  e" t" M6 D3 `
    4
    4 B0 @, I- o5 V$ E# a
    / y) g% c; U. }: C% g>> Name(M, -1);# }4 T( |- _. T: e( C! I3 o9 h
           ^' G# l# b( M% c3 X  B2 f  l& J
    Runtime error in 'Name': Argument 2 (-1) should be in the range [1 .. 1]
    3 \3 E# E- X. z7 O6 K7 e8 D  ~. t
    / @# E5 L  @3 @& A+ O2 ?16 a; K( ]- l. y* |7 @) J/ j
    Abelian Group of order 1) U# ?) G) W: O1 @9 z
    Mapping from: Abelian Group of order 1 to Set of ideals of M
    : r+ s% k) l8 z& MAbelian Group of order 1) G+ c" g1 S1 v: Z( {5 J& Z% Q6 x% I" q
    Mapping from: Abelian Group of order 1 to Set of ideals of M
    , R' G0 d& P+ ]! U0 E7 T1
    / v+ `! o* Q# ?- l- T4 u- w1& d2 z$ {4 q; L4 F! a
    Abelian Group of order 1
    : `+ o4 N& _/ V' Q% u$ qMapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no
    8 h! o) u3 T. W2 Finverse]2 X" O6 o7 B9 N$ ^$ s
    18 p: e# |% Q, Y+ L/ T( g, t0 H
    Abelian Group of order 1  @: V) N& N- L5 h3 T; X! ^- X
    Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant
    + I* q" D4 E. o+ C* u-4 given by a rule [no inverse]4 H! C4 z. G( _1 }
    Abelian Group of order 1
    5 _/ B- I4 |% o! B% dMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant
    & L. A* N  X7 l, u) J$ t-4 given by a rule [no inverse]- S4 B- D7 ]6 L4 c: s. P+ e
    false
    ) s0 q, F5 U' Z  _* _8 Xfalse  Z* e6 F; X; \! C( ~8 [, a
    ===============- d) S3 S" B0 |! H( [( d, z) h6 e6 ?4 ^
    " ]  \, I) }6 a6 Q+ w6 c6 o4 Z
    Q5:=QuadraticField(-3) ;, |' E; @  }, W4 G5 T3 o
    Q5;# ]9 `- e1 W) u- J. P$ r
    ; {* m  o8 Q5 C, y0 e/ H$ E0 Z. s: G
    Q<w> :=PolynomialRing(Q5);Q;
    7 ~$ t4 U0 Y: v, Q: U- J. z# ]EquationOrder(Q5);) ^4 C8 W' j8 I  c2 |, x8 c
    M:=MaximalOrder(Q5) ;  y5 }# L2 j  u: {- K
    M;5 o/ c0 G' M% ^8 h
    NumberField(M);
    & l/ J  Y9 q* F/ V2 P) M# dS1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;! d9 _9 v$ K7 l2 q9 L
    IsQuadratic(Q5);: g8 r+ K( i0 t2 ?  ~$ o$ R
    IsQuadratic(S1);( ^8 g! B; h) {3 l- }
    IsQuadratic(S4);
    $ J6 d6 m; W% iIsQuadratic(S25);! ]6 X! T) m' j) h  f0 H# [
    IsQuadratic(S625888888);
    ; I' U$ p  K7 s" PFactorization(w^2+3);  / S" q0 |3 n* Q- l& m! ?: B. T- m: ^
    Discriminant(Q5) ;
    5 Q! P8 L2 Y  u8 Y& R4 r9 f: hFundamentalUnit(Q5) ;
    # s/ n3 [. f* T* e2 G* RFundamentalUnit(M);
    7 u% h4 Q+ d2 M4 I& ?# b) W; Y# [Conductor(Q5) ;) ]6 z' a* c* O: K8 v+ X  W- m
    # K' S9 l+ m+ W
    Name(M, -3);
    ( ]1 c* l$ @# M& {0 |, g3 iConductor(M);# b* T( {/ H* H
    ClassGroup(Q5) ;
    ' J( b7 ^) @' h# W. n3 i' N: KClassGroup(M);! O0 W% a# d( j  y9 m1 J
    ClassNumber(Q5) ;$ u( {) X& Z+ j6 \8 h7 U' s  p& r' V2 T
    ClassNumber(M) ;
    0 E/ E6 N" G5 e; d0 wPicardGroup(M) ;
    , p5 e2 _' S) s% o* R! d9 E- hPicardNumber(M) ;
      I) U  r$ I( b: h1 e0 X8 K: D" {+ T. t
    QuadraticClassGroupTwoPart(Q5);  d' U6 N( `1 _8 U
    QuadraticClassGroupTwoPart(M);8 [% E3 M& G7 D2 S$ H
    NormEquation(Q5, -3) ;
    9 M7 s' {/ ], U6 R2 m) LNormEquation(M, -3) ;2 o. _; a0 G" H; k
    % I, |+ l/ n# \, c9 y; j5 s
    Quadratic Field with defining polynomial $.1^2 + 3 over the Rational Field
    ( ]7 G! ]. h2 ?1 p$ aUnivariate Polynomial Ring in w over Q5- X  Y4 s) J8 j4 M2 l& k2 n/ ?
    Equation Order of conductor 2 in Q5
    3 Q1 t/ k/ T9 P' o) M: |: X1 VMaximal Order of Q56 a1 q, P. h, v3 k, j2 r* C6 W
    Quadratic Field with defining polynomial $.1^2 + 3 over the Rational Field0 W- I$ D% s' @1 q- x
    Order of conductor 625888888 in Q5
    & P; b. j. K- d0 Etrue Quadratic Field with defining polynomial $.1^2 + 3 over the Rational Field
    0 P3 N4 K  q: S) B$ X( ?6 Atrue Maximal Order of Q5
    / g3 d: M  b. }true Order of conductor 16 in Q5
    2 G' Y) ]5 \) \8 F  f- V; w% d% btrue Order of conductor 625 in Q5' a7 x3 T( ]8 Q
    true Order of conductor 391736900121876544 in Q5
    8 t6 a2 F# F5 a[
    ( M. U( X0 z: O3 e& U9 X" g    <w - Q5.1, 1>,- ?6 ~! l8 c- m
        <w + Q5.1, 1>
    * w0 l9 L9 X& w- c9 U- W1 a, T]
    : h. g' u  }: }2 P-3
    9 F# v5 C: c  {: B$ N8 A" K: l6 \( a1 _6 y! f/ U9 L
    >> FundamentalUnit(Q5) ;' J% `. n& W% s! f# V; |, R
                      ^
    7 ]2 s, U$ M5 U& f: ARuntime error in 'FundamentalUnit': Field must have positive discriminant! ]5 e$ j6 Y$ B' z7 F7 }

    0 T5 E* L% X( b$ p8 v7 o3 |8 ~  w2 ?7 V) l/ r+ _2 ^
    >> FundamentalUnit(M);2 ]' \" v. M/ N; |$ C' |
                      ^: G( U  \( o& _- J5 g8 }$ e
    Runtime error in 'FundamentalUnit': Field must have positive discriminant
    & G$ G. k2 |! L  M: x2 l5 i! _$ R0 G% Z# O" u  N. q
    3
    . X$ G& z! I! [% W9 ?) ]& I* f" L# U# Y! p: j0 R- c7 A2 e1 @0 e- Z4 ^
    >> Name(M, -3);
    ) I* W. M3 d1 t; ?5 G       ^
    % Y4 a2 t& M1 ]: {+ _9 n3 `% |% ?Runtime error in 'Name': Argument 2 (-3) should be in the range [1 .. 1]
    3 a' B1 x9 L" x3 e, y4 g0 k5 r3 R2 O; I
    1. U# r! [; S9 C
    Abelian Group of order 1
    % H2 n( f! h9 S: ], ?) }( fMapping from: Abelian Group of order 1 to Set of ideals of M* x# a* `( u7 p3 B( v& m0 C
    Abelian Group of order 10 J, g" @3 F, \4 g" A) l+ j6 `- l& m
    Mapping from: Abelian Group of order 1 to Set of ideals of M. R4 j) s0 H9 Z; S$ O4 `3 c5 Z. Z
    14 [: Y. Q3 D' P$ B4 w
    11 r& _! z. D. @2 J7 M
    Abelian Group of order 1. H: o& Z7 M, h. e0 |
    Mapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no
    # o9 V& c% i2 t$ Rinverse]" {9 [  @3 a' c+ u( k- y
    1
    ! M+ c3 Q0 R+ D2 s! \( ^8 Z, K! ^Abelian Group of order 1
    4 c! D$ {2 `8 M* q2 yMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant
    7 Q% T0 {. z3 ?* u  Y-3 given by a rule [no inverse]
    ! x& r7 H# y1 Q0 g" YAbelian Group of order 1
    " j0 f/ U/ s- L$ C: L! _Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant
    ( g6 K# w( H2 g6 g& j8 ?  m-3 given by a rule [no inverse]
    ' x: N% ^# p3 v9 L6 `false
    1 C! C2 I1 j; w! B! ?; n) `false
    回复

    使用道具 举报

    74

    主题

    6

    听众

    3289

    积分

    升级  42.97%

  • TA的每日心情
    无聊
    2015-9-4 00:52
  • 签到天数: 374 天

    [LV.9]以坛为家II

    社区QQ达人 邮箱绑定达人 发帖功臣 最具活力勋章

    群组数学建摸协会

    群组Matlab讨论组

    群组小草的客厅

    群组数学建模

    群组LINGO

    回复

    使用道具 举报

    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    本帖最后由 lilianjie 于 2012-1-5 15:20 编辑
    , D, ^7 W+ d* V% V* @) r7 z1 k0 h+ W4 G) L8 M
    Dirichlet character
    1 b: k5 u& H9 s9 E. N% YDirichlet class number formula
      S( r7 d; }4 o; g$ {% |7 g8 n$ k5 O9 `: J
    虚二次域复点1,实点为0,实二次域复点0,实点为2,实二次域只有两单位根* L. ?; Z1 N& J5 W9 c5 H
    : X7 v; ]0 ^  z; d; b+ }1 y/ K
    -1时,4个单位根1,-1, i, -i,w=4,            N=4,互素(1,3),    (Z/4Z)*------->C*      χ(1mod4)=1,χ(3mod4)=-1,h=4/(2*4)*Σ[1*1+(3*(-1)]=1
    $ U: Z+ R; M: U2 c1 j# ?& C6 B9 G4 d5 [& K# a
    -3时  6个单位根                             N=3  互素(1,2),    (Z/3Z)*------->C*         χ(1mod3)=1,χ(2mod3)=-1,6 g% e  ^% \( n3 x! E3 Q
    h=-6/(2*3)*Σ[1*1+(2*(-1)]=1. o8 j3 n7 x! l$ |# v. W

    + \: B+ I" g' B7 j' @0 v-5时  2个单位根                              N=20   N=3  互素(1,3,7,9,11,13,17,19),    (Z/5Z)*------->C*         χ(1mod20)=1,χ(3mod20)=-1, χ(7mod20)=1, χ(9mod20)=1,χ(11mod20)=1,χ(13mod20)=1,χ(17mod20)=1,χ(19mod20)=1,* ?/ Q5 [( N9 X6 h$ h8 e) s% K

    ) Y% i$ z, r! O, M% [: e
    . i7 W% j, v# L' a% {- H0 ]- |7 F/ d7 [& ?; q
    h=2/(2*20)*Σ[1*1-3*1-7*1+9*1-11*1-13*1+17*1+19*1]=2' z" V& S3 m/ a. h

    ; X$ k+ H  i/ w& d4 N( D# o/ F7 n+ d4 N. i& E& ]

    : j* M' u5 p8 ~: ]' X% `-50时  个单位根                          N=200
    9 M) g4 F  L, l- x/ c
    回复

    使用道具 举报

    15

    主题

    4

    听众

    113

    积分

    升级  6.5%

  • TA的每日心情
    开心
    2012-1-13 11:49
  • 签到天数: 9 天

    [LV.3]偶尔看看II

    Dirichlet character

    21.JPG (79.18 KB, 下载次数: 220)

    21.JPG

    11.JPG (74.76 KB, 下载次数: 228)

    11.JPG

    回复

    使用道具 举报

    15

    主题

    4

    听众

    113

    积分

    升级  6.5%

  • TA的每日心情
    开心
    2012-1-13 11:49
  • 签到天数: 9 天

    [LV.3]偶尔看看II

    回复

    使用道具 举报

    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    本帖最后由 lilianjie 于 2012-1-9 20:30 编辑
    + @8 u' ~4 m9 k9 `( H4 A6 {9 M3 J
    ; L5 M1 [& U. S' Q1 mF := QuadraticField(NextPrime(5));
    ' h3 a4 D8 e( v. g1 e5 ]
    : F; A6 f0 F; R* RKK := QuadraticField(7);KK;
    , m5 ]2 q, P! b1 J# YK:=MaximalOrder(KK);
    . `+ z$ ^/ g( |+ t5 l7 ^( \Conductor(KK);
    * t5 q4 z2 n! W3 J( h. JClassGroup(KK) ;! o8 s5 @' I% b7 r( e5 v- V
    QuadraticClassGroupTwoPart(KK) ;  @1 k: I* X: D1 e+ n8 M
    NormEquation(F, 7);
    ' B+ f; \) T8 K# D* n7 s5 O6 r6 {A:=K!7;A;) T9 |' ^  y+ h2 N+ A3 m1 K. J
    B:=K!14;B;; h" z9 `2 U7 C0 r- i/ p
    Discriminant(KK)1 \- c' q' E, A0 x0 s9 F
    8 l4 U* X  }3 j2 E) Y% a4 E5 O+ i% `8 q
    Quadratic Field with defining polynomial $.1^2 - 7 over the Rational Field7 a4 U- O, ^& z% f6 `
    28
    2 V$ U; M0 n' W  Y5 `Abelian Group of order 1/ H5 j5 u. J# L- Y9 D
    Mapping from: Abelian Group of order 1 to Set of ideals of K+ ^: k* c5 l# L; _
    Abelian Group isomorphic to Z/2
    ' T2 a8 Q9 u! M% J  XDefined on 1 generator9 b+ M& S, j9 B' z) w7 ~
    Relations:
    5 r, X3 N* g- b0 ~1 Q' ?6 S: [    2*$.1 = 0& r2 \( t; [# f& ?2 D" l$ j2 c
    Mapping from: Abelian Group isomorphic to Z/2& M" `- ]9 q& T, y, h
    Defined on 1 generator
    * ?  Y% H% E+ m8 o! w7 ARelations:  K8 P5 f, U3 i! Y/ d, B
        2*$.1 = 0 to Binary quadratic forms of discriminant 28 given by a rule [no ! E5 z5 \7 ~4 m: o
    inverse]
    / d$ W. ]6 z  Y$ ]false
    / H0 P6 F0 q' c% [* ]( @7 }7
    , k9 J1 P) S, f6 m! D" E) e143 F  E* a1 e2 f0 o' ]* K$ P
    28
    回复

    使用道具 举报

    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    本帖最后由 lilianjie 于 2012-1-10 11:23 编辑
    & h6 H0 W0 l1 c  o) ?
    5 B$ a! M/ T# p# @% i7 o) F 11.JPG 8 e. i$ W4 h8 G% p8 ^/ Y# @/ t
    8 U7 J  ]* r. q% l/ N
    3212.JPG ( t( e1 J+ J" i8 D. H
    " ~, U% m" |3 g4 h- X4 O( Z
    123.JPG
    ; Y. z. J) o* R6 h. f& H4 N; Q. ^6 w2 D/ I
    分圆域:
    ; g9 M7 B/ ^7 wC:=CyclotomicField(5);C;
    4 n) m) Y2 j0 p/ `% j+ o3 R$ H9 V5 LCyclotomicPolynomial(5);- M  Q# h) o) f* q; a& H
    C:=CyclotomicField(6);C;# r( c  }4 U4 _
    CyclotomicPolynomial(6);
    ' }' b: U( q7 l- f% }3 {CC:=CyclotomicField(7);CC;
    ( p6 O/ t8 T& x1 `# LCyclotomicPolynomial(7);9 {7 @8 m) c2 D* H- }3 G
    MinimalField(CC!7) ;! M8 N' u8 @# L
    MinimalField(CC!8) ;4 r3 N6 {0 ?5 g+ s0 L. \
    MinimalField(CC!9) ;9 O) B  p( H4 b
    MinimalCyclotomicField(CC!7) ;
    " F4 b1 c5 J3 vRootOfUnity(11);RootOfUnity(111);
    ) f# N/ B  M8 Y0 _0 |Minimise(CC!123);
    1 O: F, y! F% n4 X. ~% [Conductor(CC) ;
    % t1 x5 O( u5 M0 O3 o# rCyclotomicOrder(CC) ;
      q' _% T# z# H  H4 Y% S& E8 ]5 Z! k! B& Z9 F
    CyclotomicAutomorphismGroup(CC) ;
    : [) C5 b8 Z1 }
      o# T6 J+ s! h" j" t* j& sCyclotomic Field of order 5 and degree 4$ C5 X1 P4 n. z( b9 J8 U: J
    $.1^4 + $.1^3 + $.1^2 + $.1 + 1
    ) j! t& ]$ c& XCyclotomic Field of order 6 and degree 2% p# }) @2 E* q
    $.1^2 - $.1 + 1
    ( K' ?/ {2 }2 g- r# q1 WCyclotomic Field of order 7 and degree 6
    1 \; g. l# s9 I" z$.1^6 + $.1^5 + $.1^4 + $.1^3 + $.1^2 + $.1 + 1; a8 l0 V1 o* `" J+ C5 b7 a  `& [
    Rational Field
    3 t( K8 o/ ]/ b/ o' Q, pRational Field6 u( X' f2 L1 Y
    Rational Field! ^# F1 E7 L* T8 j" U
    Rational Field
      e  P8 A- d) i( O" D" P3 L% c% Azeta_11
    * ?& E' W) ]: g$ gzeta_111& o5 e9 }, n, k% ~; l
    123
    . y" }5 E. y9 B( M; `( |7) _0 I: E& {9 U+ k, p
    7
    9 Z( {5 s. j; `. C2 g: HPermutation group acting on a set of cardinality 6; n6 q1 }" z% Z* P+ E" M7 [% j  f
    Order = 6 = 2 * 3! V( ^  G( u/ u, P9 w7 c8 |
        (1, 2)(3, 5)(4, 6)+ y/ I* E7 R0 g7 j9 P# ]; H
        (1, 3, 6, 2, 5, 4)
    6 ^1 e' g1 @) c+ k5 f8 s4 q5 R( RMapping from: GrpPerm: $, Degree 6, Order 2 * 3 to Set of all automorphisms of
      b4 P* x; k6 s. G) H6 NCC
    " c' y: n7 F4 C! {' N( bComposition of Mapping from: GrpPerm: $, Degree 6, Order 2 * 3 to GrpPerm: $,
    # W2 d+ A% E, @4 s- w# ~Degree 6, Order 2 * 3 and5 y: t2 B* Z) C: l6 {( p* e
    Mapping from: GrpPerm: $, Degree 6, Order 2 * 3 to Set of all automorphisms of
    . \3 u; w" @& g  i8 |" MCC
    回复

    使用道具 举报

    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    本帖最后由 lilianjie 于 2012-1-10 17:41 编辑 " |/ J! s1 L3 A. T
    lilianjie 发表于 2012-1-9 20:44
    ) f/ @' ~1 `4 W# @) Y分圆域:1 y, h0 q7 p, P4 u! g# o9 Y8 ]
    C:=CyclotomicField(5);C;
    / G2 Y; |: M/ w6 Z, U5 \7 DCyclotomicPolynomial(5);

    8 X; S% a  Z3 m
    - h% i5 d8 t' @2 q分圆域:
    . I9 X% Q! @9 g分圆域:123
    , k" j# M5 t6 |+ g. V$ N  d. I2 e2 A0 R
    R.<x> = Q[]
    - W" F, \8 X0 o1 UF8 = factor(x^8 - 1)% n- ^+ m; k7 k: A! l
    F8
    * Q7 m: N3 Q/ w1 X0 e1 x5 t4 t" O, {
    (x - 1) * (x + 1) * (x^2 + 1) * (x^4 + 1)(x - 1) * (x + 1) * (x^2 + 1) * (x^4 + 1) # S6 N4 |7 Q0 m/ Y

    * g' ^7 e0 l- Z# _% _, lQ<x> := QuadraticField(8);Q;+ u& X4 l2 b3 U& R% e
    C:=CyclotomicField(8);C;
    ; r6 C* @+ v* b4 iFF:=CyclotomicPolynomial(8);FF;. {. J4 {. v* k, I* R3 y

    * G. h. ^: {3 u# D, f( n3 jF := QuadraticField(8);
    8 \- @/ H  N( `; cF;5 i7 b3 X( [" ]' Q! G$ K2 R$ s( A
    D:=Factorization(FF) ;D;7 G5 }, R1 P: V5 I2 s8 I* Z
    Quadratic Field with defining polynomial $.1^2 - 2 over the Rational Field' _/ O, H/ C; z, S
    Cyclotomic Field of order 8 and degree 4
    7 F& f& |! b1 s. O$.1^4 + 1
      m8 A7 ^# ]; E& a/ z, U' {Quadratic Field with defining polynomial $.1^2 - 2 over the Rational Field
    9 Q* W+ \$ \2 l2 l5 s2 `- p[* K) J4 F- q/ f5 r
        <$.1^4 + 1, 1>
    ) ?8 |+ E8 O1 H( J6 o2 R5 v]5 B$ L0 S. F5 T' ~5 n

      F0 x; n. M0 t/ ~R.<x> = QQ[]. I, D1 u9 j; l& l; n& ]
    F6 = factor(x^6 - 1)
    , W( _; a/ d# j' H" [4 N( U- R; vF6
    ! _3 I" C% b" ^$ u2 D
    9 H7 K- f  ]  b0 g$ n+ V(x - 1) * (x + 1) * (x^2 - x + 1) * (x^2 + x + 1)(x - 1) * (x + 1) * (x^2 - x + 1) * (x^2 + x + 1)
    - w+ o# h. [* b' [4 O1 @. `) _6 q- N. i8 ^% c
    Q<x> := QuadraticField(6);Q;
    ; C$ Z) O4 x5 RC:=CyclotomicField(6);C;- ~" F5 X0 L+ h
    FF:=CyclotomicPolynomial(6);FF;
    % @  s1 o. A  a- ^. D0 u
    & v5 a  g5 B; ^/ X0 q2 J! rF := QuadraticField(6);( m0 ~# f: A# h8 {6 ]% \/ u+ o
    F;
    $ J; G( K  L3 n) L/ wD:=Factorization(FF) ;D;" F( x5 i, _+ G4 w3 H3 p7 ~1 s
    Quadratic Field with defining polynomial $.1^2 - 6 over the Rational Field0 X; G  }3 E: E8 K1 ]: L
    Cyclotomic Field of order 6 and degree 2
    4 v+ R- `6 [- q$.1^2 - $.1 + 1
    0 G* p  J) q  s. zQuadratic Field with defining polynomial $.1^2 - 6 over the Rational Field- ^; }9 b) i, T0 J
    [( G, l9 v- Y) Z/ J
        <$.1^2 - $.1 + 1, 1>& J% h! e" P' ~7 r3 i
    ]
    ; s, {8 y. i6 }1 |2 ~  ]8 E; g
    R.<x> = QQ[]
    ( Q" E: r6 }5 n" r. y7 A/ Q' L9 _0 hF5 = factor(x^10 - 1)
    8 |: R2 a  n2 g2 x6 a3 l% yF5" K9 p; G) E2 y2 }; h1 Y2 a
    (x - 1) * (x + 1) * (x^4 - x^3 + x^2 - x + 1) * (x^4 + x^3 + x^2 + x +
    7 g- L& X7 M) h! B1)(x - 1) * (x + 1) * (x^4 - x^3 + x^2 - x + 1) * (x^4 + x^3 + x^2 + x + 1); D5 j5 R5 y3 h, B2 _4 [
    + T9 n' f6 @% |$ G/ R
    Q<x> := QuadraticField(10);Q;
    3 N% V  k+ _& ]$ {8 Z- r5 O8 y, Y9 M8 iC:=CyclotomicField(10);C;
    ) E( k+ x  i7 q! |FF:=CyclotomicPolynomial(10);FF;
    ; p+ u) w5 n, n* }2 }  y2 @
    7 Q( H- }' G/ n% |  c% bF := QuadraticField(10);
    ( ^7 o- I0 g" Q  ZF;6 [/ q% G5 _% f
    D:=Factorization(FF) ;D;+ Y; R, W3 T0 @5 d# V, E, K4 s9 g
    Quadratic Field with defining polynomial $.1^2 - 10 over the Rational Field
    0 [% l. i0 ^! pCyclotomic Field of order 10 and degree 4
    " j8 w' N! k0 Y# K) O$.1^4 - $.1^3 + $.1^2 - $.1 + 18 M' S, S" K6 X5 _6 i7 J
    Quadratic Field with defining polynomial $.1^2 - 10 over the Rational Field+ u3 z9 k2 v& ~) x& O
    [: L& S1 D& C; h- J' O
        <$.1^4 - $.1^3 + $.1^2 - $.1 + 1, 1>: v. B) W5 w, E6 k; m$ s8 t0 j& v8 B1 [
    ]

    c.JPG (217.37 KB, 下载次数: 225)

    c.JPG

    aaaa.JPG (98.21 KB, 下载次数: 221)

    aaaa.JPG

    aaa.JPG (157.27 KB, 下载次数: 224)

    aaa.JPG

    aa.JPG (126.91 KB, 下载次数: 227)

    aa.JPG

    a.JPG (242.91 KB, 下载次数: 241)

    a.JPG

    回复

    使用道具 举报

    15

    主题

    4

    听众

    113

    积分

    升级  6.5%

  • TA的每日心情
    开心
    2012-1-13 11:49
  • 签到天数: 9 天

    [LV.3]偶尔看看II

    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-7-15 02:05 , Processed in 0.985768 second(s), 102 queries .

    回顶部