本帖最后由 lilianjie 于 2012-1-4 17:54 编辑 0 Q- m# n9 E7 A* t A2 p
0 F' B! y* M# \! |Q5:=QuadraticField(-5) ; % I( l0 ?/ }5 x( o7 Y XQ5; / R6 u6 |' }3 S6 V) T + A: _+ u. n5 MQ<w> :=PolynomialRing(Q5);Q; 6 ^+ @) `; L+ A$ q, g7 w8 eEquationOrder(Q5); 2 T% |0 m/ a' s) _: ?+ t$ A, ]9 @8 EM:=MaximalOrder(Q5) ; + ?6 j" w h1 ]0 e* j3 ]& M% {! o- uM;# u) r( Q# q/ j# z
NumberField(M); 8 [! b% v4 H# @5 Z+ i/ i6 N- ^S1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888; 7 k9 W2 r% Z6 N+ @2 ]IsQuadratic(Q5);3 i% ?: ^# e# T
IsQuadratic(S1);# {* k' ?# f: ~: D3 N2 e6 `
IsQuadratic(S4);6 b3 A: I7 U% H
IsQuadratic(S25); ' q1 M0 R) z7 W, ~% `+ dIsQuadratic(S625888888);( Z0 ^) l t) S: g8 h
Factorization(w^2+5); , p: k; U, z- B. |$ n# [) H$ f8 L& S6 Y2 {
Discriminant(Q5) ; * f6 \; ~3 g1 ]+ ]2 BFundamentalUnit(Q5) ; & k/ G! Z) s! D+ d d& F d7 LFundamentalUnit(M);1 }- e6 Q$ }1 i/ C8 Z+ s7 J4 v5 M
Conductor(Q5) ;, D- Q+ ~7 ^" s& n
! I1 U6 N0 {1 Q( S1 Z) H
Name(M, -5); / \. U' s( T2 a$ nConductor(M);6 R) U8 D: e1 k& t- v: U
ClassGroup(Q5) ; : c5 |' t! n1 W# m, c
ClassGroup(M); ! ]' B o& e9 c V. O' U- sClassNumber(Q5) ;1 q/ X% j) K7 s
ClassNumber(M) ; 5 s3 F$ b$ L/ n y; w6 Y/ YPicardGroup(M) ; / }; c/ \6 |& \0 F; e, @. ^4 n3 V5 B% tPicardNumber(M) ;3 n& Q- C1 S* }# ?( v. B
0 w% I( Y0 \3 ?1 O+ k6 f6 uQuadraticClassGroupTwoPart(Q5);% ~) U$ S2 f" p+ c, o2 u
QuadraticClassGroupTwoPart(M);' Y# G; }, L! a, ]$ _
NormEquation(Q5, -5) ; . R6 t" w- o$ g. L8 B6 |NormEquation(M, -5) ;4 K' _; w9 ~" p: Z; A
Quadratic Field with defining polynomial $.1^2 + 5 over the Rational Field. Q& F! b' X1 U4 T" k
Univariate Polynomial Ring in w over Q5+ H! ]8 y) Q& s, A, ~* M
Equation Order of conductor 1 in Q55 x1 p+ s- B9 l9 X" _& y
Maximal Equation Order of Q58 g* k7 F4 r0 i4 \% r
Quadratic Field with defining polynomial $.1^2 + 5 over the Rational Field 3 E! [. l; r+ ^2 n% w$ u" v6 b; ?Order of conductor 625888888 in Q51 ?. U. Y) D" M/ `+ D6 e! q
true Quadratic Field with defining polynomial $.1^2 + 5 over the Rational Field+ Q' Y z5 u9 J8 x( \) p
true Maximal Equation Order of Q58 A! v( W2 J/ u) g
true Order of conductor 1 in Q5 V) q7 q" x6 n- \3 p
true Order of conductor 1 in Q5* ~7 b9 s3 u1 |. K2 {9 n( D
true Order of conductor 1 in Q5 4 {) J+ `& G0 u: u1 B[ - N4 S% D* ?2 l; g) _8 R <w - Q5.1, 1>, 6 z \. Y% M, l( H7 ~6 x2 b% Y <w + Q5.1, 1>* D2 l W5 Q% |2 E. o* g8 Y! J
]* E% k W0 f" y8 r5 n; A2 Q
-20 # L( C% F: z4 G9 V1 S3 X ' s! p- a6 T T- s! N5 G g' y>> FundamentalUnit(Q5) ;$ ] Z# ^+ F# }! p: s6 x9 S( |6 M
^- k: X7 o6 A( Q2 P7 p) U8 {
Runtime error in 'FundamentalUnit': Field must have positive discriminant 5 j+ d: z n0 t4 k. b+ m, p1 ?. C& k( |' m* `" T* ^/ f6 B
5 l1 z& C% h" @: s3 P
>> FundamentalUnit(M);3 A3 i; N$ H5 M" H* \/ V! `7 T. ~
^: H. W1 ], g- e* x
Runtime error in 'FundamentalUnit': Field must have positive discriminant3 A" g. u0 @+ @1 ]
/ i/ N8 L% f! L; I/ n9 ~" f
20 : m2 F! H! ]7 J" o1 J W0 U$ _* b0 Z/ `9 \- s6 D+ Z5 k5 S% {4 @
>> Name(M, -5);' m$ K/ ~, A2 i4 B J
^" V$ Z2 s- r7 f: o4 u, n
Runtime error in 'Name': Argument 2 (-5) should be in the range [1 .. 1]/ g; {" e' X, p! [! W; X2 E5 j
' T9 I1 C# Y# x# k! X5 K
11 C( v- S8 g( l
Abelian Group isomorphic to Z/2! Q% R- F& Z9 H% |
Defined on 1 generator $ a/ d% O, V2 S$ f1 KRelations:; S# w+ P( |2 |% e/ _/ P! m }
2*$.1 = 0) t; u& ]; |" }8 O: P, N, I
Mapping from: Abelian Group isomorphic to Z/2- X! [: n; ?6 p7 ]" \
Defined on 1 generator) \5 u( g% c3 d, j1 H
Relations: % z! i+ g5 D+ j+ M' E8 i) Y* q 2*$.1 = 0 to Set of ideals of M 4 T8 j y% ?: t" c( B. uAbelian Group isomorphic to Z/2 1 B' k6 K0 o4 z1 ~" h3 @Defined on 1 generator; V- q+ [$ Q8 U# w/ }- A
Relations: 9 u! i2 Z: R( f0 A) S4 K9 j* v7 _ 2*$.1 = 0 8 M, S4 s0 s% c; j- xMapping from: Abelian Group isomorphic to Z/2 * E6 I% n- H, WDefined on 1 generator3 g _2 c5 J y& D; ]/ Q
Relations: 0 {& U0 S# b2 u- x- Q" Q 2*$.1 = 0 to Set of ideals of M- u, G# P1 A/ G( Q
2 & u% O0 k# q2 `9 E6 ^% d* N23 U" H( h k' W# k: Z6 d
Abelian Group isomorphic to Z/2 * ~: U2 \3 i' S# K: y. lDefined on 1 generator. ]/ `$ ?! ?8 j
Relations:2 H) {4 P) ?4 W( R% a2 t
2*$.1 = 0 , A5 r, K+ I; O. n: ?2 iMapping from: Abelian Group isomorphic to Z/2$ _, w0 q' s! t: G1 w& m6 y$ m
Defined on 1 generator : k7 D: S9 U7 J- f. c ARelations: ( z( v8 c3 u" x) A 2*$.1 = 0 to Set of ideals of M given by a rule [no inverse] 1 l( _9 e# R4 b0 I6 S2' i3 `$ M+ p- d, a, m
Abelian Group isomorphic to Z/2 y& s9 C2 S2 ^! ]3 ?Defined on 1 generator$ Z8 P! \- H+ ]- ~; @
Relations: % d* v* \+ g. X) Y4 h1 d7 r 2*$.1 = 02 S- [( l$ p8 d/ e, u6 d
Mapping from: Abelian Group isomorphic to Z/2 9 ]8 r9 J& F5 x, m8 c9 WDefined on 1 generator* t" |! U5 u) ^% N' [
Relations: ; Y- B# I; p7 o/ Z2 \+ H: X 2*$.1 = 0 to Binary quadratic forms of discriminant -20 given by a rule [no : K6 a2 e) c0 a: x( }* o4 minverse] " `( `6 R8 r% A0 v/ W2 G# kAbelian Group isomorphic to Z/2 . y4 Y. Y6 E+ k4 KDefined on 1 generator0 z0 b$ P; h$ d$ @0 ?" S5 Y" z
Relations:( {8 j% X" T; v) F4 x
2*$.1 = 0 4 p' \2 i* x2 {) jMapping from: Abelian Group isomorphic to Z/2! d, Q! {. A) K! V* Z: r* V
Defined on 1 generator 3 ?% Q( L, Q+ f' y+ FRelations: ) M9 y+ {6 y. d7 z; J; ?+ M 2*$.1 = 0 to Binary quadratic forms of discriminant -20 given by a rule [no {. u" w+ ]- `5 U( k
inverse] R3 l u4 N& ?& ifalse9 q) h: E$ I4 J. ]6 o; c* J
false* I7 c! C: j3 c& s. J
============== h: ^' b! t# |' S# D; V- S$ l0 N- B- I5 J+ b9 k
( ?# M; r; l% b" b, \
Q5:=QuadraticField(-50) ;* M" U' ]8 w3 T: R" ?: D* T
Q5; ! D9 R: I5 z# X1 O) V6 B* o8 e3 v$ P% E5 P9 v0 ]" A
Q<w> :=PolynomialRing(Q5);Q; 8 i2 H* a+ L' f8 ~# D# BEquationOrder(Q5);- j9 P- @$ ]: u( ]8 A; P
M:=MaximalOrder(Q5) ;7 e% Z! M$ u0 H. Q5 X
M;! K2 u/ n( Y+ ~5 i
NumberField(M); 9 o& m \1 S! E8 x/ {$ e& Y+ S* k7 JS1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;% o( w' ]9 {- d. ~ \ |1 C
IsQuadratic(Q5); 9 R R( N1 D! u4 N) bIsQuadratic(S1);0 D( Z$ V3 t5 w N! ~, F. B# }; E, ^
IsQuadratic(S4);# G1 J" P# R5 I" ~
IsQuadratic(S25); & J3 @' E& _% y0 j# r: f* t2 `IsQuadratic(S625888888);) u v( j7 {& D7 n6 H* j: F
Factorization(w^2+50); ' V# Q; U* q: q4 LDiscriminant(Q5) ; 8 s7 |* W) Y* N( b' {FundamentalUnit(Q5) ;# i" Q+ k- F2 [4 Q% |$ r
FundamentalUnit(M); ( h }% O7 |/ C$ G1 ]Conductor(Q5) ; 5 _8 w% j( b, y9 l ' x# x' A" b+ _3 C8 [Name(M, -50); - Q+ a$ f. H3 e2 b) mConductor(M);+ ]2 I5 a: g, C! f% x8 K& a
ClassGroup(Q5) ; , U! f# D3 p9 N$ I! F
ClassGroup(M);, e/ L6 ]) h- W& r8 v5 d" u, S
ClassNumber(Q5) ;1 X( N. R3 C; H/ s
ClassNumber(M) ;9 D; f1 J( q% T
PicardGroup(M) ; ( R% e/ S- Q+ \0 r( z) WPicardNumber(M) ;+ j9 P$ W- n# t9 G; R
- v) U% }: i. s- m" T- ?2 }
QuadraticClassGroupTwoPart(Q5);% j n2 }8 U n# N M# O" X& G% n* W0 f
QuadraticClassGroupTwoPart(M); / G9 L( @$ U8 g( Y0 B; a' j' gNormEquation(Q5, -50) ;7 ?0 ^5 k, B! j3 u1 V" n5 r
NormEquation(M, -50) ; & n( U# L R- f1 S/ `" J Z7 X! u N; n+ b/ M$ ]7 S6 |
Quadratic Field with defining polynomial $.1^2 + 2 over the Rational Field 6 t: w! H* p# d8 V2 G% TUnivariate Polynomial Ring in w over Q5 6 i9 I5 W" C, O% xEquation Order of conductor 1 in Q5( Z. I# }; z- u. B/ L
Maximal Equation Order of Q5 ! j3 q: V9 j. h0 jQuadratic Field with defining polynomial $.1^2 + 2 over the Rational Field + l7 K0 L% F: C5 iOrder of conductor 625888888 in Q5 9 _9 O4 ?7 ]1 y, U g! Z# {3 \true Quadratic Field with defining polynomial $.1^2 + 2 over the Rational Field 2 [5 y5 t; h0 q' T/ k4 I. r5 ctrue Maximal Equation Order of Q57 v/ q6 V" L; b% p! b9 m: H) s, E
true Order of conductor 1 in Q5 ' F4 a( }( G% j% E. Strue Order of conductor 1 in Q5 f Z7 c& j" w' h/ ptrue Order of conductor 1 in Q5: Y J7 ^' \! S* w2 }
[ . d( p2 J H4 N& A5 |- s. h <w - 5*Q5.1, 1>, * A' o3 g3 g- ?" I; J% a) G <w + 5*Q5.1, 1>7 L# {& U. j5 k# m9 L3 V
]' ?, u8 R8 G5 D/ u
-8 $ X/ A! A' l" D6 F0 P9 D3 w2 I0 R $ j5 e7 d0 q/ J K. X* P( F>> FundamentalUnit(Q5) ; 3 w5 c, e! Q! m0 I ^ 8 Q/ I& \! c3 Z& A& ZRuntime error in 'FundamentalUnit': Field must have positive discriminant ) n% O, G7 K/ r5 _7 A6 {) I4 i6 [2 Z3 }3 x0 s6 W0 M* n$ X
; v4 Q1 ?' H: e2 X) E/ r! D3 @4 t>> FundamentalUnit(M);* R: {2 e% ]( B; X0 T/ A
^ ]5 k9 e+ \' F- A1 j! Z% R- yRuntime error in 'FundamentalUnit': Field must have positive discriminant 7 i8 v, }' N4 }+ x' u $ N: ~2 z3 F' _; i/ ~& Y8+ c+ b+ T* }0 X2 a; g
* n6 k& L) t! q# r1 D7 F, I! C* l0 L>> Name(M, -50); . H2 P6 V: T" o8 c4 L ^ ! g" u; H/ q6 f, E0 o' rRuntime error in 'Name': Argument 2 (-50) should be in the range [1 .. 1], \9 h E1 ]2 q2 }; I! D/ C
# n' d5 T }. l% `1 $ C% A; c/ ^' g( Q' u) j" U. b9 [Abelian Group of order 1 . Q9 R+ b) s( p' v* j1 M+ o: jMapping from: Abelian Group of order 1 to Set of ideals of M ' R/ y7 F6 E: uAbelian Group of order 1- s0 r0 Z5 }: j" \$ W9 `
Mapping from: Abelian Group of order 1 to Set of ideals of M, e9 P; y& i8 x" M8 i3 R
1 # V; N( o' J3 t: @0 m- T1 1 i( [8 ]$ m* @& r9 MAbelian Group of order 1 " `0 h7 p0 H/ |3 a7 MMapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no, Q* |! T, k( [; _$ g; s3 _: f
inverse] ) W: g& p+ r0 Q1 `+ d10 a: T t0 L8 I. c: t T
Abelian Group of order 1: P6 S. n! Y% e/ h& @
Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant% b+ ]7 y1 T2 Z( b6 P3 w
-8 given by a rule [no inverse]8 f' ~7 A, ]6 e' x- |/ h
Abelian Group of order 1: w8 x j& l0 j8 s! g
Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant * Q2 _" N# I) v3 D- |% D& U3 x-8 given by a rule [no inverse] 6 x- a; O a H H$ Z$ ofalse - I0 u9 X" B8 B$ \false ; p* d; P6 Q5 ]/ a& y
3 K7 b- t2 V# u4 z$ i9 lQ<w> :=PolynomialRing(Q5);Q; 4 R, B: \7 r9 x0 _+ REquationOrder(Q5); ( t d1 U+ M% b0 b' T4 [) B4 rM:=MaximalOrder(Q5) ; 6 Y& B+ {2 X& `4 m5 Y" M7 b/ dM; ( j: X* t5 `/ z8 m, I$ Q# f# nNumberField(M); * G$ V! n# S8 H) u- h. {" e9 WS1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;( `% M* {, D n! M& B7 m) Z( ]
IsQuadratic(Q5); n; G0 l% M! ^# z& ~; b* o
IsQuadratic(S1);% Z8 h. p4 L% r' v& E- a' I
IsQuadratic(S4);0 U" I& a& L9 t2 G! v1 k
IsQuadratic(S25);0 q) H' ^. n( z# E* p5 y3 J* }- i
IsQuadratic(S625888888); R& d0 c L/ e. ^( H/ R
Factorization(w^2+1); 9 W4 a, v9 i5 F/ n* q, l. sDiscriminant(Q5) ; " u0 F" r4 O' j( _FundamentalUnit(Q5) ;5 P/ L8 Z) ?! m# n7 _* w% {. t( P
FundamentalUnit(M);7 C( O9 Q! f9 D0 }
Conductor(Q5) ;1 f) ~$ g! c- Y) G6 |# ?
7 C2 v* O( t/ m: n1 B
Name(M, -1);- B9 z1 W7 \3 A+ E3 i& j3 ~: |
Conductor(M);% A8 g, h% D5 g' E" y' c
ClassGroup(Q5) ; . L1 b$ Z* g' A: e! N4 O, w& T! B; l
ClassGroup(M); * j+ o1 o! S2 p# h( ]8 V% tClassNumber(Q5) ; 3 _9 c2 }- \& \) u! B2 }ClassNumber(M) ; 1 g- S/ I' X" Q: }: C* a! b' }PicardGroup(M) ; d# Z$ E6 |$ u4 pPicardNumber(M) ;9 ~. N4 Z; v& Y0 M& A
$ c) T8 e7 x5 [+ c3 k2 ?" }8 ^$ ~QuadraticClassGroupTwoPart(Q5); . X8 F9 s6 l6 [1 g. T) _1 s4 [QuadraticClassGroupTwoPart(M);5 [: j6 K5 T$ _! |
NormEquation(Q5, -1) ;3 a0 b6 O: e9 t7 E. Y- q8 D! \
NormEquation(M, -1) ; - l7 N; u# [0 K* b1 [. | 8 y; e! Q! G$ x j4 AQuadratic Field with defining polynomial $.1^2 + 1 over the Rational Field2 g. O1 q7 ^7 z. d. M1 e8 a3 v V4 ^
Univariate Polynomial Ring in w over Q5 ; X- u5 E5 T* n6 e/ R. h1 v& f" eEquation Order of conductor 1 in Q5 / B9 [; ~/ V t `, J+ ]4 vMaximal Equation Order of Q5& @! R1 j& }: |$ o
Quadratic Field with defining polynomial $.1^2 + 1 over the Rational Field( Y3 }* E0 w# v( I$ d& M
Order of conductor 625888888 in Q5 % b2 |/ ~! ]( y7 Htrue Quadratic Field with defining polynomial $.1^2 + 1 over the Rational Field2 k% g! ]9 S$ l \. b* O
true Maximal Equation Order of Q50 {$ h) s/ [; P4 \& N% e$ h9 d
true Order of conductor 1 in Q5 6 |6 {" D2 N3 Y' H# u8 Ktrue Order of conductor 1 in Q5 ]0 N; ~# D7 ?1 Itrue Order of conductor 1 in Q5 % M0 q8 B$ A1 q4 _& K* T[6 s. q4 u3 \7 A u6 i8 t$ x
<w - Q5.1, 1>, 2 M. F+ h/ ^& s <w + Q5.1, 1>5 l# V, z* H+ n0 h7 Q+ N+ Z$ |
]8 B! V% y+ |+ q. ~- w, Z" w. ~: f1 L' ?
-4 6 k; `! B8 O, Z b9 x$ t+ p / @3 c. ]' @& ?" M>> FundamentalUnit(Q5) ;6 n/ u4 Q% ]1 }: [: m
^" ~' R, G" G* f Y
Runtime error in 'FundamentalUnit': Field must have positive discriminant . V* P$ G8 P4 c- @) Z; D$ L9 W 5 ^' w5 |2 M% O0 y$ t/ C5 X$ @$ G
>> FundamentalUnit(M);8 [7 K1 `+ R# l* J- Q) `7 o
^; x O: F$ |- J" u; g- q
Runtime error in 'FundamentalUnit': Field must have positive discriminant/ K: D/ G- f& ?, I! V+ S( S
' O1 G e" t" M6 D3 `
4 4 B0 @, I- o5 V$ E# a / y) g% c; U. }: C% g>> Name(M, -1);# }4 T( |- _. T: e( C! I3 o9 h
^' G# l# b( M% c3 X B2 f l& J
Runtime error in 'Name': Argument 2 (-1) should be in the range [1 .. 1] 3 \3 E# E- X. z7 O6 K7 e8 D ~. t / @# E5 L @3 @& A+ O2 ?16 a; K( ]- l. y* |7 @) J/ j
Abelian Group of order 1) U# ?) G) W: O1 @9 z
Mapping from: Abelian Group of order 1 to Set of ideals of M : r+ s% k) l8 z& MAbelian Group of order 1) G+ c" g1 S1 v: Z( {5 J& Z% Q6 x% I" q
Mapping from: Abelian Group of order 1 to Set of ideals of M , R' G0 d& P+ ]! U0 E7 T1 / v+ `! o* Q# ?- l- T4 u- w1& d2 z$ {4 q; L4 F! a
Abelian Group of order 1 : `+ o4 N& _/ V' Q% u$ qMapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no 8 h! o) u3 T. W2 Finverse]2 X" O6 o7 B9 N$ ^$ s
18 p: e# |% Q, Y+ L/ T( g, t0 H
Abelian Group of order 1 @: V) N& N- L5 h3 T; X! ^- X
Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant + I* q" D4 E. o+ C* u-4 given by a rule [no inverse]4 H! C4 z. G( _1 }
Abelian Group of order 1 5 _/ B- I4 |% o! B% dMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant & L. A* N X7 l, u) J$ t-4 given by a rule [no inverse]- S4 B- D7 ]6 L4 c: s. P+ e
false ) s0 q, F5 U' Z _* _8 Xfalse Z* e6 F; X; \! C( ~8 [, a
===============- d) S3 S" B0 |! H( [( d, z) h6 e6 ?4 ^
" ] \, I) }6 a6 Q+ w6 c6 o4 Z
Q5:=QuadraticField(-3) ;, |' E; @ }, W4 G5 T3 o
Q5;# ]9 `- e1 W) u- J. P$ r
; {* m o8 Q5 C, y0 e/ H$ E0 Z. s: G
Q<w> :=PolynomialRing(Q5);Q; 7 ~$ t4 U0 Y: v, Q: U- J. z# ]EquationOrder(Q5);) ^4 C8 W' j8 I c2 |, x8 c
M:=MaximalOrder(Q5) ; y5 }# L2 j u: {- K
M;5 o/ c0 G' M% ^8 h
NumberField(M); & l/ J Y9 q* F/ V2 P) M# dS1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;! d9 _9 v$ K7 l2 q9 L
IsQuadratic(Q5);: g8 r+ K( i0 t2 ? ~$ o$ R
IsQuadratic(S1);( ^8 g! B; h) {3 l- }
IsQuadratic(S4); $ J6 d6 m; W% iIsQuadratic(S25);! ]6 X! T) m' j) h f0 H# [
IsQuadratic(S625888888); ; I' U$ p K7 s" PFactorization(w^2+3); / S" q0 |3 n* Q- l& m! ?: B. T- m: ^
Discriminant(Q5) ; 5 Q! P8 L2 Y u8 Y& R4 r9 f: hFundamentalUnit(Q5) ; # s/ n3 [. f* T* e2 G* RFundamentalUnit(M); 7 u% h4 Q+ d2 M4 I& ?# b) W; Y# [Conductor(Q5) ;) ]6 z' a* c* O: K8 v+ X W- m
# K' S9 l+ m+ W
Name(M, -3); ( ]1 c* l$ @# M& {0 |, g3 iConductor(M);# b* T( {/ H* H
ClassGroup(Q5) ; ' J( b7 ^) @' h# W. n3 i' N: KClassGroup(M);! O0 W% a# d( j y9 m1 J
ClassNumber(Q5) ;$ u( {) X& Z+ j6 \8 h7 U' s p& r' V2 T
ClassNumber(M) ; 0 E/ E6 N" G5 e; d0 wPicardGroup(M) ; , p5 e2 _' S) s% o* R! d9 E- hPicardNumber(M) ; I) U r$ I( b: h1 e0 X8 K: D" {+ T. t
QuadraticClassGroupTwoPart(Q5); d' U6 N( `1 _8 U
QuadraticClassGroupTwoPart(M);8 [% E3 M& G7 D2 S$ H
NormEquation(Q5, -3) ; 9 M7 s' {/ ], U6 R2 m) LNormEquation(M, -3) ;2 o. _; a0 G" H; k
% I, |+ l/ n# \, c9 y; j5 s
Quadratic Field with defining polynomial $.1^2 + 3 over the Rational Field ( ]7 G! ]. h2 ?1 p$ aUnivariate Polynomial Ring in w over Q5- X Y4 s) J8 j4 M2 l& k2 n/ ?
Equation Order of conductor 2 in Q5 3 Q1 t/ k/ T9 P' o) M: |: X1 VMaximal Order of Q56 a1 q, P. h, v3 k, j2 r* C6 W
Quadratic Field with defining polynomial $.1^2 + 3 over the Rational Field0 W- I$ D% s' @1 q- x
Order of conductor 625888888 in Q5 & P; b. j. K- d0 Etrue Quadratic Field with defining polynomial $.1^2 + 3 over the Rational Field 0 P3 N4 K q: S) B$ X( ?6 Atrue Maximal Order of Q5 / g3 d: M b. }true Order of conductor 16 in Q5 2 G' Y) ]5 \) \8 F f- V; w% d% btrue Order of conductor 625 in Q5' a7 x3 T( ]8 Q
true Order of conductor 391736900121876544 in Q5 8 t6 a2 F# F5 a[ ( M. U( X0 z: O3 e& U9 X" g <w - Q5.1, 1>,- ?6 ~! l8 c- m
<w + Q5.1, 1> * w0 l9 L9 X& w- c9 U- W1 a, T] : h. g' u }: }2 P-3 9 F# v5 C: c {: B$ N8 A" K: l6 \( a1 _6 y! f/ U9 L
>> FundamentalUnit(Q5) ;' J% `. n& W% s! f# V; |, R
^ 7 ]2 s, U$ M5 U& f: ARuntime error in 'FundamentalUnit': Field must have positive discriminant! ]5 e$ j6 Y$ B' z7 F7 }
0 T5 E* L% X( b$ p8 v7 o3 |8 ~ w2 ?7 V) l/ r+ _2 ^
>> FundamentalUnit(M);2 ]' \" v. M/ N; |$ C' |
^: G( U \( o& _- J5 g8 }$ e
Runtime error in 'FundamentalUnit': Field must have positive discriminant & G$ G. k2 |! L M: x2 l5 i! _$ R0 G% Z# O" u N. q
3 . X$ G& z! I! [% W9 ?) ]& I* f" L# U# Y! p: j0 R- c7 A2 e1 @0 e- Z4 ^
>> Name(M, -3); ) I* W. M3 d1 t; ?5 G ^ % Y4 a2 t& M1 ]: {+ _9 n3 `% |% ?Runtime error in 'Name': Argument 2 (-3) should be in the range [1 .. 1] 3 a' B1 x9 L" x3 e, y4 g0 k5 r3 R2 O; I
1. U# r! [; S9 C
Abelian Group of order 1 % H2 n( f! h9 S: ], ?) }( fMapping from: Abelian Group of order 1 to Set of ideals of M* x# a* `( u7 p3 B( v& m0 C
Abelian Group of order 10 J, g" @3 F, \4 g" A) l+ j6 `- l& m
Mapping from: Abelian Group of order 1 to Set of ideals of M. R4 j) s0 H9 Z; S$ O4 `3 c5 Z. Z
14 [: Y. Q3 D' P$ B4 w
11 r& _! z. D. @2 J7 M
Abelian Group of order 1. H: o& Z7 M, h. e0 |
Mapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no # o9 V& c% i2 t$ Rinverse]" {9 [ @3 a' c+ u( k- y
1 ! M+ c3 Q0 R+ D2 s! \( ^8 Z, K! ^Abelian Group of order 1 4 c! D$ {2 `8 M* q2 yMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant 7 Q% T0 {. z3 ?* u Y-3 given by a rule [no inverse] ! x& r7 H# y1 Q0 g" YAbelian Group of order 1 " j0 f/ U/ s- L$ C: L! _Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant ( g6 K# w( H2 g6 g& j8 ? m-3 given by a rule [no inverse] ' x: N% ^# p3 v9 L6 `false 1 C! C2 I1 j; w! B! ?; n) `false