QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 2769|回复: 2
打印 上一主题 下一主题

序理想

[复制链接]
字体大小: 正常 放大

15

主题

4

听众

113

积分

升级  6.5%

  • TA的每日心情
    开心
    2012-1-13 11:49
  • 签到天数: 9 天

    [LV.3]偶尔看看II

    跳转到指定楼层
    1#
    发表于 2012-1-9 15:36 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    序理论中理想的最一般的定义如下:+ Z( |" K1 U# ]- |

    0 ]! h  m- x( w* w( I- q; V偏序集合(P,≤)的非空子集 I 称为一个理想,若 I 满足:
    6 W- R6 o! B' [, J5 k$ s1 m; g- D& L+ b" ^
    I是下闭的。即,∀x ∈ I, y ∈ P, y ≤ x ⇒ y ∈ I。 4 Z1 x, m/ C3 x! ~
    I是有向的。即,∀x,y ∈ I,∃z ∈ I,使 x ≤ z,y ≤ z。
    / z$ i, \/ I( z8 h+ X, q理想最初只在格上定义。与上述定义等价的定义如下: 格(P,≤)的非空子集 I 是理想,当且仅当:) E; y0 m; A% E# K# G$ D

    5 H$ G0 Z; \: q8 E* u+ t$ _I是下闭的。 5 r* f- M5 |0 ]. i9 W. P
    I对于有限并(上确界)运算封闭,即,∀x,y ∈ I,有x ∨ y ∈ I。
    # p- _# ~# M+ Z& B* u$ b2 W3 E4 O8 w) y; s$ D
    理想的序对偶概念(用≥代替≤,用∧代替∨),是滤子。
    " `4 J+ ~6 b# Y& f* M4 }+ h术语有序理想或有序滤子有时用于任意的下部集合或上部集合,本文只使用“理想/滤子”和“下闭/上闭集合”来避免混淆。
    + F$ [' P6 J6 T1 p) h: T4 Z2 u+ O真理想:偏序集合(P,≤)的理想 I 被称为真理想,若I ≠ P。
    # F7 u; x" M& O- k! u" p包含一个给定元素 p 的最小理想称为主理想,p 被称为该理想的主元素。主元素为 p 的主理想 ↓p = { x ∈ P | x ≤ p }。
    / I9 V2 _1 [+ [% B4 Z5 F8 K
    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信

    15

    主题

    4

    听众

    113

    积分

    升级  6.5%

  • TA的每日心情
    开心
    2012-1-13 11:49
  • 签到天数: 9 天

    [LV.3]偶尔看看II

    滤子的最一般定义是:
    3 A2 l+ U5 u' K0 B) M. |) ^' |5 M) e" r9 `
    偏序集合 (P,≤) 的非空子集 F 是滤子,若 F 满足:
    : |) ~" ~% C2 A  N
    - S" N; A8 y" M6 n0 F, i∀x, y ∈ F,∃z ∈ F,使 z ≤ x 且 z ≤ y。(F 是滤子基)
    + z+ j' H( V& n3 |F 是上闭的:∀x ∈ F,y ∈ P,x ≤ y ⇒ y ∈ F。 5 I2 M* n4 ]" }0 [+ Z5 U
    滤子最初只是为格定义的。在这种情况下,上述定义可以被特征化为如下等价陈述: 格 (P,≤) 的非空子集 F 是滤子,当且仅当它是闭合在有限的交(下确界)下的上闭集合,就是说,对于所有在 F 中的 x, y,我们找到 x ∧ y 也在 F 中。
    # q; _7 i9 k, X8 m* s/ ]. F: J
    ' ^1 o0 f0 L* d1 U1 V# r$ Q1 O; \. Y+ ?! `8 {) H. L$ C) y9 S0 v" V+ h
    滤子的序对偶(交换≥和≤,∧和∨)概念是理想; ! S  [. f9 ]  l1 j3 Q; w3 n; B
    真滤子:偏序集P的滤子F称为真滤子,若I ≠ P。 $ \$ c2 q5 I4 q" B1 s. l
    回复

    使用道具 举报

    74

    主题

    6

    听众

    3289

    积分

    升级  42.97%

  • TA的每日心情
    无聊
    2015-9-4 00:52
  • 签到天数: 374 天

    [LV.9]以坛为家II

    社区QQ达人 邮箱绑定达人 发帖功臣 最具活力勋章

    群组数学建摸协会

    群组Matlab讨论组

    群组小草的客厅

    群组数学建模

    群组LINGO

    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-8-2 11:54 , Processed in 0.463547 second(s), 62 queries .

    回顶部