- 在线时间
- 114 小时
- 最后登录
- 2014-8-1
- 注册时间
- 2008-11-17
- 听众数
- 3
- 收听数
- 0
- 能力
- 0 分
- 体力
- 1050 点
- 威望
- 0 点
- 阅读权限
- 40
- 积分
- 394
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 146
- 主题
- 18
- 精华
- 0
- 分享
- 0
- 好友
- 30
升级   31.33% TA的每日心情 | 开心 2012-8-22 10:37 |
---|
签到天数: 92 天 [LV.6]常住居民II
 |
本帖最后由 chengenlin 于 2012-5-1 14:50 编辑
; H2 ]/ E0 ~% h% t
0 J- L) Q+ u, f6 a8 E, ~ 由上篇导读2,我们已证得5│z的这个结论(其中,记号5│z表示5能被z整除)。不过,要加以说明的是,我们指定的满足不定方程
8 z, [2 ~0 w, D; f. _; p$ W( g x5+y5=z5 (7)
5 Q5 ?/ q; ]8 a8 G各组解中的z必须是最小的。(为使大家便于理解,不妨举大家熟知的例子,如勾股定理的式子x2+y2=z2 的各组正整数解(3,4,5),(6,810)和(9,12,15)…………,或(7,24,25),(14,48,50),(21,72,75)…… 。以上两组解中,其中第一组解(3,4,5)中的z=5是最小的。而另一组解(7,24,25)中的z=25是最小的。可以看出第一组解(3,4,5)是基础解,有了(3,4,5)的解,对x2+y2=z2 来说,就会有后面的6,810)和(9,12,15)…………等无数组正整数解,方法是将第一组(3,4,5)中的各数乘以2,就得到另一组解。以此类推。第二组解也是如此。由此,可以看出 (7)式如果有一组正整数的基础解,将会有无数组正整数解。由于已设定z是不定方程 x5+y5=z5 各组解中最小的z值,因此必然是x,y之间无公因数(用式子表示为(x,y)=1)。这是因为如果(x,y)=d>1的话,将(7)式两边同除以d5,得到d5分别被 x5和y5整除,记作d5│ x5,d5│ y5。因此,由(7)式就得到d5│z5 ,也即有d│z。由于z整除d得到的 z'的值比z还小,这与z是 各组解 中最小的z值发生矛盾。因此必有(x,y)=1 能成立。再来证明,还有(z,x)=(z,y)=1 的式子能成立。这是因为假 若(z,x)=m>1的话,就得到m│z 和m│x,把(7)式两边同除以m5,就得到m│y 。由已证得的 m│x和 m│y ,就得到(x,y)=m>1,这与已证得的(x,y)=1发生矛盾。也即由(7)式- c& T1 w$ S2 D ^( t! h' I6 p
,必有0 t7 R7 f- x* A1 C8 e" l. X# S
(x,y)=(z,x)=(z,y)=1 (8)- E3 A& A7 l5 Y/ X- h
能成立。以上已说明z是各组解中最小的z值,解读2中已证明了5│z,因此 z是5 的倍数,但不是5的平方的倍数,因此有
U3 T3 o7 C; S0 c3 \7 h; O' q+ J (5)2┥z (表示5的平方不能被z整除) (9)- E7 t# o8 k D3 _9 ]4 j
以下,我们将由5│z出发,从后面推导得到的其它式子来证得(5)2能被z整除。应当说这真是一个奇迹,证明完后我们将说明为什么会有此奇迹发生。由z5=x5+y5=(x+y)5-5xy(x+y)3+5x2y2(x+y),将其等式右边提取公因式5(x+y),得到 # D- M3 a; m4 ?$ h
z5=5(x+y)(e(x+y)4-xy(x+y)2 +x2y2)(其中的 e=5分之1 ) (10)
$ `: a$ S N2 |! E! d) @由 于5│ t 在导读1中已被证明 ,即有5│(x+y-z) 。由 证得5│z和5│(x+y-z) ,就得到 5│(x+y)。由于e=5分之1 ,因此 e(x+y)4为正整数。下面 ,将证明- Y( |7 d' k2 B5 t# W9 L
( 5(x+y),e(x+y)4-xy(x+y)2+x2y2 )=1 (11)
+ Z8 r, k4 o- z, c6 P" H+ u n 先引入以下几个引理: Z! U5 a/ J/ s+ c
引理1:设a,b为正整数,且a>b。若(a,b)=1,则(a+b,b)=1和(a-b,b)=1。证明:假设(a+b,b)=d>1,此时存在正整数u1和u2, 使得a+b=du1和b=du2(其中(u1,u2)=1)。因此可求得a=d(u1-u2),由于b=du2,故得到(a ,b)=d>1,这与已知(a,b)=1相矛盾,故有(a+b,b)=1。同理可证(a-b,b)=1。 ( 举例来说,若(2,3)=1,就有(2,2+3)=1)
$ I2 P. ^$ J) X% k. a _& z5 z# Y 引理2:设a,b,c和k为正整数。若c│a且(a,b)=1 , 则有(c,b)=1(符号c│a,表示c能被a整除)。证明:因为c│a,这时存在一个正整数k,使得a=kc能成立。将a=kc代入(a,b)=1中,得(kc,b)=1。由(kc,b)=1,表示正整数k和c的乘积与正整数b之间无公因数,由此,那么必定得到c与b无公因数、k与b也无公因数,否则的话就有(kc,b)= d>1与以上得到的(kc,b)=1相矛盾。因此,当c│a和(a,b)=1时 , 必有(c,b)=1。 ( 举例来说,若3│6且(6,7)=1 ,则有(3,7)=1)+ O5 R! G5 V Q: m4 A. I6 k
引理3:设a,b,c和为正整数,若(a,b)=(a,c)=1,则(a,bc)=1。证明:因为(a,b)=(a,c)=1时,表明a和b、c之间都无公因数,则a和bc之间也一定无公因数。不然的话由(a,bc)=d>1,就有(a,b)=d'>1或(a,c)=d">1能成立,但这与已知(a,b)=(a,c)=1发生矛盾。因此,当(a,b)=(a,c)=1时,有(a,bc)=1。 ( 举例来说,若(2,3)=(2,5)=1,则有(2,15)=1)* M2 T& ?/ I/ i6 g
引理4:设a,b和n为正整数,若(a,b)=1,则有(a , b的n次方)=1。证明:因为(a,b)=1,表明a和b之间无公因数,则a和b的n次方之间也一定无公因数。不然的话(a ,b的n次方)=d>1,就要得到(a,b)=d'>1,这与已知(a,b)=1发生矛盾。故当(a,b)=1时,必有(a ,b的n次方)=1。 ( 举例来说,若(2,3)=1,则一定有(2,3的任何次方)=1)( C" w x/ }8 f0 x; i
现在,开始证明(11)式,分两步走。先证( x+y,e(x+y)4-xy(x+y)2+x2y2 )=1 ,由于(8)式有(x,y)=1,可以证得(x+y,x)=1和( x+y,Y)=1(参引理1)。由此,可以证得(x+y,xy)=1(参 引理3)。再由(x+y,xy)=1可以证得(x+y,
3 }6 w3 { m! @ J c, mx2y2 )=1 (参 引理4)。接着,由( x+y)│(e(x+y)4-xy(x+y)2 )和(x+y,x2y2)=1,就可证得( x+y,e(x+y)4-xy(x+y)2+x2y2 )=1 (参引理2)。由于5│( x+y),和( x+y,e(x+y)4-xy(x+y)2+x2y2 )=1,就能证得( 5,e(x+y)4-xy(x+y)2+x2y2 )=1成立(参引理2)。最后,由已证得的( 5,e(x+y)4-xy(x+y)2+x2y2 )=1和( x+y,e(x+y)4-xy(x+y)2+x2y2 )=1,就证得(( 5(x+y),e(x+y)4-xy(x+y)2+x2y2 )=1(参 引理3),也即(11)式被证明成立。由(10)和(11)式的成立,知必定存在正整数d和s,使得 5(x+y)=d5, 和e(x+y)4-xy(x+y)2+x2y2 =s5 能成立。也即有
+ V6 L4 k( V4 a! N# \ { x+y=e d5 (其中e=5分之1 ) (12)
' u d7 U: v$ C* ?$ R$ B8 x, ` p能成立。把 x5+y5=z5 变形为 x5=z5 - y5。因x5=z5 - y5 =(z-y)5 +5zy(z-y)3 +5z2 y2 (z-y)=(z-y)((z-y)4 +
7 I6 z" D: h# z 5z y(z-y)2 +5z2 y2 ),也即有/ g3 r% ?, t% [
x5=(z-y)((z-y)4 + 5z y(z-y)2 +5z2 y2 ) (13)
, F, S5 m# k. {8 W 由于,由(8)式有(z,x)=1。在本文的开头,表明在导读2已证得5│z 。由 5│z 和 (z,x)=1,就能证得(5,x)=1
/ t/ Q4 k. f* _& ]& r, w(参 引理2)。由(x,5)=1就证得(x 5 ,5)=1(参引理4)。由(x 5 ,5)=1和(13)式,就证得((z-y)((z-y)4 + 5z y(z-y)2 +5z2 y2 ,5)=1。由此式,就证得(z-y,5)=1 。接着,再由(8)式(z,y)=1 ,能证得(z-y ,z)=(z-y,y)=1。(参引理1)。再由此式,就证得(z-y,zy)=1(参引理3)。接着,由(z-y,zy)=1,就证得(z-y , z 2y 2)=1(参引理4)。由已证得的(z-y,5)=1 和(z-y , z 2y 2)=1就证得(z-y , 5 z 2 y 2)=1(参引理3)。由于(z-y)│((z-y)4 + 5z y(z-y)2 )和(z-y , 5 z 2 y 2)=1,就能证得
' s% o# Q- x& I) X+ h1 I (z-y ,(z-y)4 + 5z y(z-y)2 +5z2 y2 )=1(参引理2) (14)
/ z4 {! Z4 x! B( A R5 ` 由(13)和(14) 式,知存在正整数m和v,使得z-y=m5 和(z-y)4 + 5z y(z-y)2 +5z2 y2 =v5能成立。即有
9 X# R5 V) j* t5 Y* l1 X$ M" G4 s z-y=m5 (15)5 b( Y+ R3 I7 q! m0 e2 l" F
成立。再将 x5+y5=z5 变形为 y5=z5 -x5。由y5=z5 -x5,同理,可以证得6 a0 b$ p s% q, }: {
z-x=p5 (其中p为 正整数) (16)
8 R- y" ?" E1 Y/ a3 s7 q2 _ 把(12),(15)和(16)三个式子相加,得到
1 `3 F. H4 m/ i4 |8 v- k: H# q, \. w 2z=e d5 +( m5 + p5 ) (其中e=5分之1 ) (17)
! z" z: B, o8 c/ H4 l# c! D 把(17)式两边同除以5。由于5│z,因此5│2z能成立,再由(12)式 x+y=e d5 (其中e=5分之1 ),可得到5│d,因此 5│e d5 也 能成立。由等式的性质,得到( J& a, W9 w) y7 y0 a; {% u
5│( m5 + p5 ) (18)! b4 N: \' G1 R0 E/ l* E8 s
能成立。将 m5 + p5 展开为* z8 L+ v3 T3 H. y
m5 + p5 =(m+p) 5-5mp(m+p)3+5m2p2(m+p) (19)3 y& C, K6 ^$ ^8 C% o
将此式两边同除以5,因此得到- e# _( Y0 V s: ?! z5 A$ K
5│(m+p) 5-5mp(m+p)3+5m2p2(m+p) (20)
( ?0 T; Y q: |% I- Y" s6 m 由(19)式,可以看到 它的 右边 3项中有2项的系数是5的倍数。因此,由整除的性质,可以得到另一项 (m+p) 5也能被5整除,也即有5│(m+p) 5。由于5是其素数,且m+p为正整数,因此当5│(m+p) 5时,m+p和5只存在一种关系,就是
- A+ }/ h$ f; b0 U1 v, K% f5│(m+p)。由5│(m+p),可以看出(5)2能被(m+p) 5 整除,另两项都含因式5(m+p) 因此也能被(5)2整除。因此,得到
# u6 ]6 M4 j; H8 @/ ~8 N (5)2│(m+p) 5-5mp(m+p)3+5m2p2(m+p) (21)$ y# m# z" s7 \! D( \, a
将(19)和(21)式对照,就得到7 t$ Q+ s1 n% Q$ o, b
(5)2│( m5 + p5 )(这里记号(5)2是表示5的平方) (22)5 n- {3 ?) [# H! U7 q1 J o
由(17)式,其中的项e d5 由于e=5分之1 ,得知 5│d,因而(5)2 │ e d5 能成立。由(5)2 │ e d5 ,和(22)式
& Y% c% o* J3 r6 q" H. _& B(5)2│( m5 + p5 )及(17)式,可以证得(5)2│ 2z。由(5)2│ 2z,及(5)2与2无公因数,因此必有
& J; ]: P1 k. ?$ w1 X (5)2│ z (23)1 @7 g+ @$ t# K7 E7 `. r
明显看出(23)与(9)式发生矛盾,由此可以看出假设不定方程 x5+y5=z5 有正整数解不能成立。' J2 l" @' f p" n7 G7 n
. `3 | L: I- Z: r
* D% M9 t: ?: A9 g% q0 T# m 说明:我用完全相同的原理来证得n为一切奇素数时,证得费尔马大定理成立。再结合当n=4时xn+yn=zn没有正整数解已被人们得到证明成立。和我国著明的数学家陈景润在所著的《初等数论》的《费尔马问题的介绍》中,表明了“当n=4时和n为一切奇素数时,费尔马大定理成立。就可以归纳得出费尔马大定理成立,也即证得当n取一切大于2的整数时,不定方程xn+yn=zn没有正整数解成立。# q7 Q6 m, @' m, q# r" u4 C
3 V/ q, S R3 s ]2 _: v0 J- d% r
证明结束后进行回顾和小结:本文中突出抓住不定方程 x5+y5=z5 指数5 与其变量x,y和z之间的关系,进行深入分析。有趣的是,当证明进行到(20)式5│(m+p) 5-5mp(m+p)3+5m2p2(m+p) 后,为什么会出现仅由此式本身,就又能证得(21)式的(5)2│(m+p) 5-5mp(m+p)3+5m2p2(m+p)能成立呢?按道理这绝对是违反常规的,而正是这个奇怪的现象,却导致后面我们能证明成功。对这个奇怪的现象通过冷静地思考就会发现,如果m和p不全是正整数就不会发生以上矛盾了,事实上,由于最终证明了不定方程没有正整数解,x,y和z不可能全是正整数,因此由(12),(15)和(16)式知m和p就不可能都是正整数。这就回答了以上为什么会出现奇怪的现象。也就是说,当m和p不全是正整数时(20)式本身就不能成立的,当然更不会有(21)式成立的结论,因而也就不会发生后面的矛盾了。
' N) m2 z: o. u+ q
( m. ]' h$ E( L8 A: B6 Y 下文 解读4,经行全面分析,应当更有趣。
N7 z9 O: q, C2 S6 l: N h- i+ V- {& g5 K4 q) `) n4 K f
( P+ E1 e$ V3 f, U2 ?1 J# }
4 R) K( f& W1 k l( [+ z. @& C5 e1 v0 Q
0 O- o9 t9 {( L l8 C, j: {: b- c+ o9 ?/ V
# U2 M$ [- C4 ? w9 I" b' t& A# G
- Y- R. a+ v1 {% m8 G/ o# S
0 u6 [9 D1 ?2 T$ {/ }% h) p: k( W/ T6 H, O3 j* _
& V% W. o& ~9 B! n
|
zan
|