- 在线时间
- 40 小时
- 最后登录
- 2014-5-17
- 注册时间
- 2012-8-4
- 听众数
- 4
- 收听数
- 0
- 能力
- 0 分
- 体力
- 314 点
- 威望
- 0 点
- 阅读权限
- 30
- 积分
- 160
- 相册
- 0
- 日志
- 0
- 记录
- 2
- 帖子
- 130
- 主题
- 2
- 精华
- 0
- 分享
- 0
- 好友
- 5
升级   30% TA的每日心情 | 开心 2014-5-17 22:06 |
|---|
签到天数: 54 天 [LV.5]常住居民I
- 自我介绍
- 嘻嘻嘻
 |
简单的介绍一下几个概念,顺便推荐几本好书。
) _# ]: t1 g) p8 I. B# ~一.数学模型的定义$ D$ e7 [* D z
现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。不过我们可以给出如下定义。"数 学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。"具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图象、框图等描述客观事物的特征及其内在联系的数学结构表达式。5 R, K+ `6 d# x( B) ]
二.建立数学模型的方法和步骤' J2 ?. I# @$ n9 I' {- f( g
第一、 模型准备
! n8 L0 T! B7 j- X. P @+ K; o6 { 首先要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。, ~7 I( ^) ?, A2 B
第二、 模型假设5 X& D# _( G l+ C
根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力 ,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。
0 Y/ D t% T( \1 f( b5 d第三、 模型构成
2 Y/ |' T& X7 n6 Y 根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。* b/ X+ T" e9 q% C
第四、模型求解& q- C' [3 \4 h: K5 C
可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。0 W5 c4 W5 o6 L- S/ J4 Y2 r
第五、模型分析0 O+ |! p. E6 U
对模型解答进行数学上的分析。"横看成岭侧成峰,远近高低各不同",能否对模型结果作出细致精当的分析,决定了你的模型能否达到更高的档次。还要记住,不论那种情况都需进行误差分析,数据稳定性分析。
" r2 h1 G$ c- x) m- x% B5 W+ c9 }* w2 c( T+ P3 t
关于数模竞赛的几本好书
( ~" f- G2 O; `9 r! ?1 |<<数学建模竞赛培训教材>> 共三本 叶其孝主编5 a. p% ?1 z" \" \* m F
<<数学模型>> 第二版 姜启源
; g: g2 g" {, n7 S$ a<<随机规划>> O. G, `* t0 d7 D' ^1 }8 r$ ]
<<模糊数学>> 3 [; e# e& J! C0 N+ c: E( a. P
<<数据结构>>
( w5 k# T& |0 L! w) I7 M<<数学建模入门>> 徐全智- t4 i' o" v2 w+ a% P
<<计算机算法设计与分析>> 国防科大 |
zan
|