1. 用图表检验Analyze -> regression -> Linear-> Plots+ ~" d" J7 Q1 \ q+ L
Scatter plot of the standardised residuals on the standardised predicted values (ZRESID as the Y variable, and ZPRED as the X variable
4 d4 ^% j, t1 [( c2 P1 d+ }) A: b4 \1 I6 p v7 }, |4 l( \7 [; ]9 }
如果图表显示有可能存在异方差,需要用统计检验来进一步检测异方差是否确实存在。9 y) a& E. n4 [- f. g" q
2. 用统计检验0 {6 m- o6 I8 R
Heteroscedasticity——Testing and Correcting in SPSS.pdf
Gwilym Pryce March 2002.doc
(172.5 KB, 下载次数: 4)
0 k2 a4 B, A i: U5 {
- b& W+ O( `* H$ [1 r
7 u L& q. h) ~9 O
Levene’s Test
' b. m! J4 c. ?: I+ |7 AGoldfeld-Quandt Test
9 e- c0 c' u5 L/ [7 v% S# x% PBreusch-Pagan Test$ y8 }" k" G1 x. N }2 _, Q1 v
White‘s Test (比较常用来检验异方差)
* w2 O: S: h0 v5 [Assume you want to run a regression of wage on age, work experience,education, gender, and a dummy for sectorofemployment (whether employed in the public sector). wage = function(age, workexperience, education, gender, sector) or, as your textbook will have it, wage = b1 + b2*age + b3*work experience+ b4*education + b5*gender + b6*sector The White’s test is usually used as a test for heteroskedasticity. In this test, a regression of the squares ofthe residuals is run on the variables suspected of causing theheteroskedasticity, their squares, and cross products. (residuals)2 = b0 + b1 educ + b2 work_ex+ b3 (educ)2 + b4 (work_ex)2 + b5(educ*work_ex)
% _! [0 N6 w# G1 M( U2 f
! J5 X9 R/ w# F6 d. a: Q
5 s7 c$ F* q& v/ E. T8 N0 t. X$ w8 ]
White’s Test · Calculate n*R2 à R2 = 0.037, n=2016 à Thus, n*R2 = .037*2016 = 74.6. , F, L2 |/ }7 Y
· Compare this value with c2 (n), i.e.with c2 (2016) ! q1 o& O) F( l0 O+ C4 d
(c2 is the symbol for theChi-Square distribution)
9 ^4 f! Y# C$ ]1 i: ?c2 (2016) = 124obtained from c2 table. (For 955 confidence) As n*R2 < c2 ,heteroskedasticity can not be confirmed.
, l" O/ F- [$ u! Z3 L7 Q1 i j2 J& m( i; _3 G
请参考:regression_explained_SPSS
regression_explained_SPSS.doc
(368 KB, 下载次数: 0)
# h- q) x+ _& V. j5 e G; V |