QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 1058|回复: 0
打印 上一主题 下一主题

大数据的商业前景被过分夸大

[复制链接]
字体大小: 正常 放大

937

主题

117

听众

3万

积分

升级  0%

  • TA的每日心情

    2020-10-25 11:55
  • 签到天数: 264 天

    [LV.8]以坛为家I

    自我介绍
    内蒙古大学计算机学院

    社区QQ达人 金点子奖 助人为乐奖 风雨历程奖

    群组2013年数学建模国赛备

    跳转到指定楼层
    1#
    发表于 2014-4-17 00:51 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta

    几乎每天都能看到有人在谈论大数据,让人好生厌烦。什么是大数据(Big Data) ? 简单一点可以理解为超出传统数据管理工具处理能力的大规模、复杂的数据集合。判断是否数据大数据的范畴,要从三个维度来衡量:数据量(Volume)、处理速度( Velocity)以及数据种类(Variety)。

    大数据(Big Data) 是 2012 年信息技术领域最时髦的词汇。当然,跟所有曾经的时髦技术热词一样,最后可能是一场骗局。为什么?
    大数据是个相对的概念,新瓶装旧酒
    有些人所说的大数据处理方式,不过是在既有的方案上包装了一下,新瓶装旧酒,只为赶时髦。今天的大数据可能到了明天算不上大数据。过去我们也曾经对「海量数据」望而生畏。但海量数据时代并没有给多少企业带来革命性的变化,在 MapReduce 以及 Hadoop 出现之前,没有多少企业能够轻松的对数据进行大规模并行计算(奇怪的是,那时候没有多少人提大数据)。而 NoSQL 的出现也为处理数据的方式带来了更多可能性。我们突然发现,处理数据能力已经悄然增强。
    大数据是机会,但不是所有人的机会
    大数据的商业前景被过分夸大了。到目前来看,只有为数不多的企业真正拥有大数据,而且这些数据的管理、处理、分析并没有带来所谓空前大的挑战。因为新的工具、新的计算方式已经已经具备处理这些数据的能力。
    大数据是机会,但只是少数人的机会,更多是巨头们的商业障眼法,比如 IBM 、Oracle、微软,他们提倡甚至夸大大数据的目的还是为了向你兜售他们的工具,兜售他们的解决方案,确切的说,从你身上赚钱。更有甚者,居然是向你兜售硬件,这不完全是扯淡么? 大硬件还差不多。
    中小型公司应该绕道走,别唯大佬们马首是瞻,别总去凑热闹。你所需要的东西,通过开源社区就可以获取到,参加各种大佬们口沫横飞的会议还不如和工程师聊聊可以运用什么工具来具体操练一下。「适用」好比什么都重要。创业公司也应该绕着「大数据」走,这未必是个好方向。
    大数据的确会有价值,但没有那么大
    必须要承认从某些大数据中会挖掘出新的价值,但这个价值只是附加价值,没有理由去夸大他,更没有理由去无端的想象。你可以说这篇沙漠可能有金子,但并不是说沙漠中一定就能挖掘出金子。
    从现在业界一些公司拿出来的所谓的大数据应用实例来看,依然只是在利用传统意义上的数据价值,只是巧妙地把这笔帐记在了大数据上而已。一个电子商务网站说「什么地方的人买东西最疯狂」或是「什么型号手机最好卖」,这会是大数据分析的结果,完全是扯淡嘛。难道数据仓库系统分析出来的结果和这个大数据出来的结果会有不同么?
    不算结束的结束语
    大数据不会是什么「商业模式的变革」,重视大数据,但没必要抱着大数据的大腿,尤其是在业界对于「数据」还不够重视的时候,就更别说大数据了。相信随着时间的推移,大数据这个词会和信息爆炸、网格计算、云计算等逐渐被淡忘,当然,到时候可能出现新的时髦词汇了。
    没有大数据,只有数据;没有蓝海,只有大海;没有先知,只有忽悠。
    --EOF--

    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-9-17 17:34 , Processed in 0.329712 second(s), 51 queries .

    回顶部