QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 58657|回复: 328
打印 上一主题 下一主题

数学专业英语-(a) How to define a mathematical term?

  [复制链接]
字体大小: 正常 放大
hehe123        

43

主题

11

听众

1151

积分

该用户从未签到

自我介绍
200 字节以内

不支持自定义 Discuz! 代码

新人进步奖

群组数学趣味、游戏、IQ等

跳转到指定楼层
1#
发表于 2004-11-27 13:39 |只看该作者 |倒序浏览
|招呼Ta 关注Ta
数学专业英语-(a) How to define a mathematical term? ) Q- h# P) e" B1 ^# u6 J$ a/ r+ \1 b

2 U' v! d2 X8 I1 p9 B0 i

0 _5 H7 l+ @8 [9 [

5 i5 c3 ^: ^ R

数学术语的定义和数学定理的叙述,其基本格式可归纳为似“if…then…”的格式,其他的格式一般地说可视为这一格式的延伸或变形。 + m4 u& X0 R! C1 ^3 `# O- x- D 9 s" \* ^: j4 x & Z4 n6 y6 {( U0 H7 s

8 k8 Z' L6 Z. H

如果一定语短语或定语从句,以界定被定义的词,所得定义表面上看虽不是“If……then……”的句型,而实际上是用“定语部分”代替了“If”句,因此我们可以把“定语部分”写成If句,从而又回到“If……then……”的句型。 8 B9 L% w% P. a7 ]( ^6 l% S

: ^1 s. B; w$ w* a, y

0 M" h) \! P3 i: f

至于下面将要叙述的“Let…if…then”,“Let and assume…, If…then…”等句型,其实质也是基本句型“If……then……”的延伸。 0 y' Z% C5 E# F( z, @ p) {( t

( w8 Z) `- m% R) J4 V0 J

( {$ E* i# X& v( S% C _* l

有时,在定义或定理中,需要附加说明某些成份,我们还可在“if…then…”句中插入如“where…”等的句子,加以延伸(见后面例子)。 ! ?/ r! R* w8 q8 Q

6 E& N; G+ u. F4 r

9 }3 w) p( _( r' O7 N/ P. W

总之,绝大部分(如果不是全部的话)数学术语的定义和定理的叙述均可采用本附录中各种格式之。 5 A* F: P0 y$ f& q& ~' i; U

8 c& v9 \" f$ D+ I, l l8 q7 R

4 l1 V2 [- e" N& |) N& I& N2 s$ l3 ]

1 _3 h/ k% }4 |* n

2 a, b. v R: r1 J

+ M. s( W; K4 o6 {# M

% n% l9 F! K7 M

1 |% F$ v" z R: V+ r

& u- g$ \+ R \: E. b

aHow to define a mathematical term?

) M2 a9 L- V( x* G, k

1 h7 X2 m4 s8 x; o

6 s( c. R0 c/ ?8 ?6 f

: y0 {$ l U4 d* r

: K4 k( ?1 [7 F) L: l/ n' c# m/ P( U9 B2 d! \/ u8 k: j* W1 J, T7 ?8 h$ u4 V
. V x/ q) s% O% m0 b1 v% j! L

is defined as # b4 P2 y0 N6 L& N' U' F

! I# Q( R' Z v0 V% n3 A/ R

$ a0 N* J0 {; [' ]. q

is called 7 s" J. r: g1 G) D7 H

9 a/ c" a; \7 _6 E& f% B* ^

) b4 Q( C- Q2 u

1. Something something ) F% J1 J& k2 k. F

5 l& z" R; B: W: v

- j( ^: @5 K: j7 |6 _( ^

& o. B# M1 s: Q

v0 C+ Y6 N, t/ J7 o0 j

+ |( s' L1 c4 [/ j* ?

# ?9 s! ?) o" S7 y

' I9 z9 J- V2 M; W' [3 G) F

: |; M( ` h' l, B

The union of A and B is defined as the set of those elements which are in A, in B or in both. : q T2 V" ?0 n ]9 c2 N$ [

- Q+ a1 b' U2 \8 m2 }

8 i$ B& {, L: G% _3 V! I7 {

The mapping , ad-bc 0, is called a Mobius transformation. U) R" Z0 }2 ~+ @* I# Q

" z9 z0 d+ D* i/ ~( b' i2 X

" d3 g k5 I8 y+ ^' Y

$ U4 `5 P2 a1 B8 U2 T/ q4 {: B P7 w; V; K6 i- a7 p! G: \, m( A9 B
# d8 W+ \& q7 J1 c3 F

is defined to be ' n2 a a" n! Q6 m1 s4 z% g

; [) w9 C; d" s6 g, t

& y* A$ F( O6 S8 x \6 a

is said to be ]; E5 k# ?; H& R Z8 A/ ~1 d

d, ^' C7 r* o

! x2 [8 ^1 H, F4 N) t" r7 E9 J

2. Something something(or adjective) , G; V+ u# z! L

- M2 T! d8 [( \4 t6 C- w' q

$ P, i" ?$ A" O+ m! x9 W

7 a% g; _9 {2 U6 o

* N L! @# o) n9 R9 |

- ^) ^2 b! k. e% q3 y. k

8 A' U8 E! M }3 O

9 ?' a9 y7 j. m" p* ~( F

6 M1 }1 R' c0 C& w. m

The difference A-B is defined to be the set of all elements of A which are not in B. . V, N: u4 X4 Y' ]' k6 B

! N2 q/ a$ E1 W* t x

0 A* |0 C4 I. N3 ^

A real number that cannot be expressed as the ratio of two integers is said to be an irrational number. * V! M2 [6 v) C5 @

- S4 I( F8 v4 R! ]

3 G% R; ~2 m: I" l8 e$ H

Real numbers which are greater than zero are said to be positive. $ C, v: R# O" ~8 P

1 L; M4 X. \- \4 K/ i$ m

' W( e; H8 e( q0 F B

: N6 b: X( N# L/ d/ r; I' V+ S5 B5 n! q7 z/ ?7 @: e1 W8 k
& t- V" ]7 e% r

define * }6 u# |2 T$ x7 ?2 u x' u0 v- f

: e0 C! z0 b, ]

. f4 d8 t1 H5 E6 R

call 1 k, Z1 h2 y2 n; b( V6 g

( S4 P* G7 {4 c- r2 j

# J \" |3 G8 c+ G. m

3. We something to be something. 7 F% k/ W3 L3 n: Z5 [- n+ S

6 v$ z2 @8 f L( }. u! ]

5 r# M3 S0 x; B+ `8 l

0 J& k# f# ]8 f& D+ M

1 ^- _3 T) S9 E; b* G( x& T) g

1 z2 H3 s5 T$ { H

; O" ]5 p+ m/ Q/ a3 M1 I

* D+ K! A/ n* t' b4 H# _

5 w# W8 j$ L6 }3 R

We define the intersection of A and B to be the set of those elements common to both A and B. ; H6 Z" Q$ E1 T7 h

5 z1 V5 x2 A2 Z/ [# r8 ?4 j

5 f/ E# g( |& E! A! V

We call real numbers that are less than zero (to be) negative numbers. 8 }, _! H* w5 {, m% d( X

! k/ ~( q7 u# l2 s

! w, U% \4 P7 x1 R5 Y- V

4. 如果在定义某一术语之前,需要事先交代某些东西(前提),可用如下形式: 9 G/ y, _; X% |3 K {# e

. `0 X, U6 Z9 k/ f, [: t& @

1 o% c4 I# E V. K0 J x$ ?7 F

2 D8 S9 O; k9 Y" n+ H% H+ T

, l+ h$ g- a( y+ ^; H) y0 ]

v K5 ?- ~% d% D

4 u. {- q) i. P7 t, W1 ~

1 _$ L2 m9 l! H2 G; u$ ]8 {

7 O2 K! u* @; {7 l6 z$ w

: O$ I3 ^0 r2 w$ U: W/ [8 {) E2 W, U+ T, T) F% i0 l1 h( U f+ ?, ~
: S8 t9 `& Z o

is called 3 e; s' l( w2 b

# g$ @' ]) w! [+ Q& o! h; [ t: W

. O* ]6 k, m: K( q( b

is said to be ! _3 N6 n4 s$ x: j

% A2 ]- g/ B8 r* c! W8 E

1 w ^3 f3 w+ ?5 B3 c. d! y0 [

is defined as % D2 Q) }( K5 I5 N

, o; V( P' w9 N7 X {9 r; m

# w+ }* {% _2 I, k3 f7 F2 j

is defined to be 1 F& M3 A5 D0 ~7 M: Z

1 T( {5 K3 T5 H' V+ K; I' \

+ w& x _% e% X+ q

Let…, then… 7 ?) ^3 y. v9 I$ Z# j5 \

- h6 D4 k3 p0 @$ d" w* C

" k8 f9 M" O. K' o7 R+ p1 r

7 N1 A5 K: |$ q* }: e6 Z7 f- q9 n

3 w% L0 \8 ~: z& @$ K

) K6 G: y9 M% `9 T

. x* p: i) ^/ y

% y% V) n* o3 p

3 L8 O# E- ^, j# u7 P. z

4 P& E$ g: @6 Z! O2 \

4 ?! S7 I+ \6 c+ L

, S, y$ U5 f5 b

$ X& ~ N/ T8 C7 o2 }0 j. P" i

+ \: V, X2 ?! D, K' a

* s! N- H1 P& t) s- m

Let x=( ) be an n-tuple of real numbers. Then the set of all such n-tuples is defined as the Euclidean n-space R. 1 Y& X, W4 V1 I! ]* a$ }" B

0 c- ~8 \9 c- e4 b8 Q# L+ F

/ w2 S+ G6 O$ F( | k3 ?

Let d(x,y) denote the distance between two points x and y of a set A. Then the number 9 Z( [7 i& ^* o' s

. G) k/ }5 g" q. Q. @ ? Z/ F

( }* z" @6 r5 D: i( F! y3 h! m

D= 5 H# x% J7 z' V1 V

) i# l$ A8 _' _$ K L" R

; s, N) o) `5 Z5 Q0 c

is called the diameter of A. 1 l& z+ w1 g2 p. M

: S0 ]8 T7 K# t+ f, d3 s$ m5 n P, c

# L/ |/ _, l8 }+ f4 o" x+ _

5.如果被定义术语,需要满足某些条件,则可用如下形式: 8 L6 t4 u5 ?0 c. Y9 d, [/ Q

* ?0 d1 ^: x( K# L

2 c3 A, t# x3 ?4 g6 _0 Z

, O5 e4 t) N) S6 H$ B5 q5 _9 W- A6 P7 g7 K2 q8 v" R3 L5 W' h$ T6 ?) d0 T
8 ~- H9 |* G, q! x( t2 k

is called 8 U) z W' x( p4 v' h m8 _9 p

6 k1 H. L y$ ~; m( Z! s

7 S) E* i* B8 L- M: n

is said to be ) Y# u, e0 B3 a' R: z

; [8 P3 |0 k% {3 ~; p2 f( v

2 Q" H1 S5 I' i$ S+ S6 `

is defined as O4 e7 E: R0 _2 S( H+ u

- n" `8 ?% H. _. _. S# w

2 U- u) L- m! I7 m1 {- ?

is defined to be - B/ J8 Z; i) _

* ~$ {; P, J1 |1 o! P6 v9 G

3 [- O* n; v7 G) p) }, r

If…, then… ' B; G) a2 Y4 E; @

: q- a" U9 y6 i: X4 I" _

. i( |8 m6 N+ }2 w' j" }7 d

: ?/ l h) u. H5 H& o

; D: s: t: b0 e$ ?1 O% p

' e1 K3 S8 x- K' h6 q. w6 I( h

/ F% g% |6 h* a' X! R

4 F H: b+ S. q8 l8 D

* A. l, B) r. D2 s6 O: I" \

1 U( k/ B7 _" Q$ P) \ x

3 Z; a9 p/ Q- E4 z3 y

$ ]% ~% j b+ N$ e& f1 K. U

& O5 r; |) q. c% D

3 y" ~$ o7 @* t+ p

# S: } S4 B: T

If the number of rows of a matrix A equals the number of its columns, then A is called a square matrix. y* q, n! b4 u e$ R, }

0 S* s2 q) l; X2 q3 g. @8 o

4 t3 o6 z: n- l1 w! Y

If a function f is differentiable at every point of a domain D, then it is said to be analytic in D. n( [' l& h$ F$ a

! {. a( |2 Q" {* f0 F8 }/ t/ @, F

5 E+ n: A) P A4 o* {& P1 p

6.如果需要说明被定义术语应在什么前提下,满足什么条件,则可用下面形式: 0 N5 y7 f0 D* T3 @6 e3 {. A

/ g3 Z! o. f4 Y& {

, K; A% ^! q8 [% c; _

" V# c" H/ D; ^# h) M

! W6 }7 s# ~6 D& i9 U w4 H" L0 B1 E9 r& S' C9 w) u s7 t9 @: a$ ~- p: z& k, I# w
8 g/ {: o. A! C9 Y! @3 d9 F) H) a0 k
) ?! ^* ?3 {8 U& e

is called

6 a' t4 P) q/ P& d

is said to be

' Y" X m9 M% ?" ^* t - |" [1 H' f# x0 }+ X- z) B2 F! s- g- e% f( e; ^& m4 Y6 Z4 ]/ h8 ]% N9 Q+ v9 e+ m: I# F/ `
5 ]( ?' Z( B# V9 s
S. Q' @$ g9 I/ N; M! i

Let

( \2 q( t/ @( f. i, H" g( b. e1 ]

Suppose

…. If…then… … : K; ~# Q j0 d2 f5 _3 C% C

3 a+ i3 t$ Z; X' t

Q! B' Q% ], p, E$ [

% O# C: F4 S: k: v+ m5 X4 {

9 N% g O' t9 ]/ C6 b O3 J4 M

8 l) o7 ~9 O5 E' m

2 X, ?9 n* a+ N- ^

?6 W8 q+ V8 k6 J$ h- v

( U5 W1 F7 D9 S8 a

Let f(z) be an analytic function defined on a domain D (前提条件). If for every pair or points , and in D with , we have f( ) f( ) (直接条件)then f(z) is called a schlicht function or is said to be schlicht in D. 9 ]# T `' C. j2 _* R- a5 \5 l

$ `3 k; @8 `8 p. |$ Y. e P

2 O0 o- M, B* L) I

, H q+ e/ @3 w. `3 _4 A

5 e( M6 I# l) U A7 j, T% x9 g

zan
转播转播0 分享淘帖0 分享分享4 收藏收藏24 支持支持7 反对反对1 微信微信
hehe123        

43

主题

11

听众

1151

积分

该用户从未签到

自我介绍
200 字节以内

不支持自定义 Discuz! 代码

新人进步奖

群组数学趣味、游戏、IQ等

7. 如果被定义术语需要满足几个条件(大前提,小前提,直接条件)则可用如下形式: * B! | k( Y9 Y' |0 |( O

suppose

assume

Let…and …. If…then…is called…

Let D be a domain and suppose that f(z) is analytic in D. If for every pair of points and in D with , we have f( ) f( ), then f(z) is called a schlicht function.

Notes:

(a) 一种形式往往可写成另一种形式。

Let{ }be a sequence of sets. If for all n, then{ }is called an ascending or a non-decreasing sequence.

我们可用一定语短语来代替“If”句,使其变为“Let……then”句

Let{ }be a sequence of sets with for all n, then{ }is called an ascending or a non-decreasing sequence.

(b) 注意“Let”,“suppose”(“assume”),“if”的使用次序,一般来说,前面的可用后面的替换,但后面的用前面的替换就不好了,如上面句子可改写为:

Suppose{ }is a sequence of sets. If , then{ }is called an ascending sequence.

Let{ }be a sequence of sets and suppose that then{ }is called an ascending sequence.

但下面的句子是错误的(至少是不好的句子);

If{ }is a sequence of sets, and let , then{ }is called an ascending sequence.

(c) 在定义一些术语后,往往需要用符号来表达,或者需要对句中某些成份作附加说明,这时我们需要把定义句扩充,扩充的办法是在定义的原有结构中,插入一个由连接词引导的句子,这类连接词或短语经常是“and”,“where”,“in this (that) case请参看PARTIA第一课注1和第二课注456

If every element of a set A also belongs to another set B, then A is said to be the subset of B, and we write

A real number is said to be a rational if it can be expressed as the ratio of two integers, where the denominator is not zero.

(d) 在定义中,“if”句是关键句,且往往比较复杂,要特别注意在一些定义中,“if”句又有它自己的表达格式,读者对这类句子的结构也要掌握,下面我们以函数极限定义中的“if”句的结构作为例子加以说明:

If for every >0, there is (there exists) a >0, such that whenever 0< , then we say f(x) has a limit A at the point a.

上面是函数极限的定义,其中的“if”句是它的典型结构,凡与极限相关的概念,如连续,收敛,一致连续,一致收敛等定义均有类似结构。例:

A sequence of functions { } is said to have the Cauchy property uniformly on a set E if for any >0, there is an N such that whenever n,m>N.

当然,极限定义还有其他表达形式但基本结构是一样的,只不过对句中某些部分用等价的语法结构互作替换而已。

下面是函数极限定义中“if”句的另一些表达式,读者可把这些句子和原来的句子作比较。

If, given any >0, there exists a >0, such that whenever (if,for) 0< ,…

If, corresponding to any >0, a >0 can be found such that whenever 0< ,…

If, for every >0,there is a >0, such that 0< implies .

回复

使用道具 举报

hehe123        

43

主题

11

听众

1151

积分

该用户从未签到

自我介绍
200 字节以内

不支持自定义 Discuz! 代码

新人进步奖

群组数学趣味、游戏、IQ等

数学专业英语-(b)How to state a theorem?

数学专业英语-(b)How to state a theorem? ' _: Q% k8 N6 h8 U2 z0 \1 ` 9 e1 d7 P, g3 G! p

' E9 `6 z' l5 L4 r0 H

. P2 W$ m- k* N6 O' ^

& u u0 d! x! l

定理叙述的格式,基本上与数学术语的定义一样,只不过在术语的定义中,“then”句有比较固定的格式,而定理的“then”句则随其结果而变吧了。 ) I8 H8 b( s# \( @ ! R/ a1 j& M0 J4 x' F5 p$ R3 n" R; N+ j8 s3 T$ l& G0 |7 l

+ r! z, }. j1 x+ @; T

1.某些定理可用简单句叙述。 9 h7 i0 P* i1 l0 V

$ Y6 X: l8 Z P' M

Q3 d5 o9 ^7 |3 D& _' I- _( ]

The union of a finite number of closed sets is still a closed set. : E4 ?; q$ p. Y& T

0 T0 r5 e5 C! M f9 p7 A' d6 x" V

/ l# n8 \, E7 b6 h0 Q

The space (E,f) is complete. 8 z' D- _% f( v' r- j x! L6 n' z

3 P3 E& a" Y) s# J* F

- W3 q& j3 @. L* S

2. 如果定理的结论是在一定前提下得到的,则可用下面形式: + f S: W2 {4 d; M

$ F8 k8 ~; J7 K! k3 I. ~3 _+ @

0 X. `9 @, @5 s# G6 Z6 w

“Suppose…Then…”or“Let….Then…” + S8 E. C7 L; H& n& o& t

; O {% g, h% f/ t; S, `

. g; O) |+ t5 U9 \) B( B3 s

Let f(x) be a continuous function defined on[a,b]. Then f(x) attains its maximum and minimum on [a,b]. , l5 D$ e: c! D7 u- e

4 e2 h ~' o3 H& h( p% F' ?

, f) y3 k8 D) `7 m6 P

Suppose that f(z) is analytic in a simply connected domain D, then for any closed simple curve C lying within D, we have " G& e" {2 n& u

@3 |) x# T" ?9 [2 D

3 F( H3 M, C. u/ A. H, l2 P2 K

# g' i7 s1 k, U) ]

6 @$ E& p- x5 A. L/ n

$ Q4 m0 ~! K( g$ O

3. 如果定理的结论在一定假设条件下成立,则可用下面的形式 ) T' @ w- K9 T

6 V/ f" p$ G) L" w

! Z# f- l' _/ {; f+ T, B

“If…, then…” - z- @! C' D" U3 }

; M' ?5 _; c% ~& W( h o4 v

4 _/ I: I9 W; `4 d

If P(z) is a non-constant polynomial then there is a complex number c with P(c)=0 / i9 H+ w1 p! w* p# R+ I4 o8 j6 c

( u+ H( m8 T2 i; E) G

^# Z/ m8 K& O4 Y2 f

4. 如果定理的结论除了在一定条件下,还需在一定前提下才成立,这时可用如下形式 ) u* q- c4 S! W' a

/ H5 y1 W- ^: m5 e# N$ R& U

# _ b3 k; c6 ?3 q) _4 w1 g! ]

“Let…. If…,then…”or ) O* u _. ~" T5 T# y

; \3 Q! u! V7 Q2 f' J! p( Z2 b

1 }7 y. z$ @, y# f4 T

“Suppose…. If…,then…” % \. m( r, ~& r" R

8 V9 {3 P* ]% ]* M( g" x* l

6 S1 U7 T; b# J% ?( h; g

Let , , , be four distinct points. If all these four points lie on a circle, then the cross-ratio( , , , ) is real. & K) M4 G' J& c+ v

- j& f3 Z& G0 o1 C

* k( ^ |) b% f8 A

5. 如果定理的结论在不同层次的几种条件下面成立,可用如下形式: b' j4 R. C! y% G9 r

]% t U! v+ c0 ^+ `2 G& E1 a% h

& i+ B* ? Y1 s9 S2 D' @4 j8 Y

“Let…, and assume….If…then…” * c. w! f6 G, q+ P

* t6 R2 R6 v$ v/ `

4 E/ T$ m/ P. s' t7 @6 d/ Z

Let f(x) be defined on open interval I, and assume that f(x) has a relative maximum or a relative minimum at an interior point c of I. If the derivative f’(c) exists, then f’(c)=0. 4 \: ]" U2 V) U" m# z) @; V

! {% [4 e1 I' r, e

/ v1 H9 d) F. T* j0 I% ^

# s& c* T/ o0 m- `$ W* k

4 [/ r9 M" g+ d' H

回复

使用道具 举报

hehe123        

43

主题

11

听众

1151

积分

该用户从未签到

自我介绍
200 字节以内

不支持自定义 Discuz! 代码

新人进步奖

群组数学趣味、游戏、IQ等

数学专业英语-(c)How to write an abstract?

数学专业英语-(c)How to write an abstract? 5 f [% r) D. u4 W: d $ S" }; Y" u* x

+ g1 O% M# v& W; R. F" k |1 K% {

u8 M, k5 H1 Z, s, i! D5 s$ h

3 A/ G- B9 K9 I% K$ I

论文摘要的写法不像数学术语的定义和数学定理的叙述那样。有一定的格式可循,但对于初学者来说仍有一些常见的句子可加以摹仿。现略举一些这样的句子,并附上一些论文摘要作为例子,供读者参考。需要指出的是,我们这里所举的例句对普遍的文章均适合,比较抽象,具体的论文摘要除了可用上下面某些句子外,必须有具体内容,更确切地说摘要中要包括一些 key words 以说明该文涉及的内容,但一般不要在摘要中引用文献。 $ b$ M) m- f1 @2 S 4 e/ U5 O# W9 } X" _; G. T k2 j$ r. E6 |7 x+ Q- n0 @

' Q" D7 ~& S. J9 ]$ z

1.开门见山,说明文章内容,可用下面的句子起句: - `. ~- Z/ [1 H% d) z+ j8 A

9 |7 Z$ V2 Z0 E5 ?" P

* a- T" t# S* U2 F$ J0 L

~/ c" R+ s8 w8 T5 I) @

9 v6 t+ i% s/ ?9 k* N1 A/ N' Y0 {. S0 }: U+ g4 J( N2 [, ]. I
- S7 X: U L+ U0 v) U; l8 J
4 J/ ~4 t2 l. }( C3 Y+ s( I" k5 W

prove

& N. D. c) [0 a. S' C; \ n8 c- n$ q

show

# e* }8 i4 J1 B9 t, U

present

5 s/ q$ X# F( V* S' F P

develop

$ ?/ ?1 v! D* y( V" U, u+ g6 b

generalize

2 }! R$ ] N2 w

investigate

$ y- O1 B4 w; g0 g& B, f: ]

5 X( z5 O' j0 c4 o

! D; R" a$ X; R. G) \( f& p% K

9 x3 l. T5 X) `& c) p, k8 | 4 j, I' Z! {* Y6 e8 P" C2 P) W- U9 }5 m; ^2 X( I9 v/ w4 j( {6 k( H
8 B B$ X( s: |, g( {
5 H# z, z1 ]5 F1 ?1 L3 |

paper

8 g0 i2 ^0 B# }1 M* O

note

# D2 t, ^- u7 q |& Q0 H# c% D5 W" [$ E( R0 h2 q) b) @: I% a! k' T; F, y L% ^. y/ ~" x' y) R4 Z" U8 b6 ?: Z6 _, Q
- Z' r% N0 r$ N
* |3 @1 c" v- W! \) z9 h

aim

' f E1 b" o. R6 ?$ m V

object

+ g1 S0 \4 K% ~5 }+ i' w3 d" b

purpose

The of this is to … J2 W0 ]% t- ~3 o

4 z2 h$ m e3 X# p

, ]3 `* f* Y+ {, f

) n/ ]& X0 t' ~ s2 L' H

, j R; v% g0 j. f) G

. J4 ~6 W. c( J; L0 t: V

; }% n& |! x l

3 A% }+ p) x7 [0 ~+ \3 p% `4 @

7 k( w' L; l. A* K

/ i0 g" u5 Q5 J' ]6 H* u0 B

2 q$ c8 A- p* A1 w

$ R8 Z$ | n9 p: x( X3 i+ l

' f& ^& }& q& x A2 k9 }

# ?8 W& N G+ \; W5 n& F' Q

" Z, k' N$ x' M

. U. f3 v7 ?9 D8 \

" p' W* N5 e, o+ W5 v7 c. u) D5 F9 t

" o1 r+ F1 V6 ^8 I

" _4 U" o( | k5 e+ T) ?, q0 R, ]

$ K: R7 x7 C6 p- P+ O

5 v+ a- j4 R2 p, i) |5 k

8 _7 c. ?% ~ R- x* N. [% ]

/ M! U' j @8 Y7 E* Z; e1 w5 ^2 }: Y. x: h. t; t. J) c, X7 X/ ?& R. D/ a
$ T+ c# O! `/ o& M. x) h
* r# {, @* O+ o0 p+ ?

prove

6 l% |; N- u4 Y2 C) [9 V

show

5 O+ e% S( k- A. ~

present

+ q8 q1 G. \7 \. `0 k2 |

develop

/ |6 g" H ~+ X$ x9 S

generalize

( w% r! z# w% k9 o5 x$ o5 C

investigate

It is the purpose of this paper to : a9 }+ V. H1 U# L$ T$ u

, d" F1 }# ^8 `3 A' Y+ X6 O# |1 @

' O: l+ P+ a3 @3 w0 R/ N

+ r, S5 z& _3 p+ ]0 d; i0 g0 @

, u* t6 t3 C3 L8 @

5 T, m$ |! H$ {. Y/ r

, X t2 [6 Z+ P* U

% m2 t# o4 r2 d

5 j( [8 o/ ~9 I/ J

& c- Q0 t: y/ Z( R

0 Z9 B b0 J9 [' H) e

1 Q+ j+ s& y4 r' N

5 g$ |0 ~+ u' Y# c" C9 Y" t

, e( A9 x- u6 t- f3 y1 q

8 R' R# C1 C1 f" @) [/ C9 `& ?

4 x$ b2 Z+ ], V& N. a

2 ]! i. }5 ^9 V3 C8 F5 c; L

, |4 S. _' B9 O

; ~$ L1 g6 x9 u6 P

' f, W( g1 \4 u7 i9 H4 _

" i3 @; Z' o9 E) a1 h6 g" E

$ ^/ k' H4 o* j8 x

# \$ e( j& y9 i! r1 N0 \3 K4 B# ]7 [2 F8 g! B; n$ K6 M u9 Y9 ?0 B
; m% A2 q: N) ~% @. V* `- R* d
1 |, ^9 r: W: G" ]' g& r8 Y( U; z3 w, g

is concerned

' y5 m! k$ d+ K1 {6 Z, D2 s

deals

This paper with… 9 u N- ^% f* T

4 D) r5 m4 S: m8 t: s$ q5 f* I( \$ w! |

5 r" ~+ ~+ b, v' b! T5 { D

1 R& M7 m6 b+ g8 v

6 V& A% F" e0 J

5 Y! `$ c. T T7 c: [1 S; E1 t

0 m. z. ~4 T6 ~

9 F4 |) |3 d, P v' I& R

; I7 y" C+ V* F8 K+ b5 ~6 B: ?+ B( Z

0 L" I- c& c b4 j1 }. K* y& ?

3 n) Q" N6 G3 L+ ?1 n" p. K8 w/ e7 V# T( A+ A* A/ F( {% {1 o" F8 l- |) n& ?
( M3 y( E2 H6 r8 X/ ~+ [
& V# k) I8 }2 K4 z

prove

& Z" ?0 Y, F8 [( A. q( @( ~# b

present

0 U/ @, J% L: j" Y1 g# r

propose to show

In this paper we … * G$ @3 a0 T; p0 G' E! z6 Y" T

/ Z8 |5 l+ M/ S" i& w: R4 P( T

2 O) ~, y/ s5 v

0 z5 i- S! j, E% ? b3 H

X/ F: D, l3 `& A/ M% l

* ] |% ~( X% t

# I8 }+ e( I1 t* f

, Z! @' D4 \3 R% D' Q4 i" Y

" }1 [6 ]: z' O' k

( D) Y8 z- Z# J" u; b& i8 q+ t9 M

, `( E) l. [- B( r

" Y( b6 i$ [: Y( A; D$ v* p e% H6 E

2.如果需要简略回顾历史,然后再说明自己文章的内容,则可参考采用下面句子。 # @9 h& b- j) P# J& a

A7 g: Z+ L3 ]: O% j7 ^( t

+ {4 O+ G/ Z* N! E% M

The problem…was first treated by…and later…improved by…The purpose of this paper is to prove that it holds in a more general case. " T* o q( Y; Q3 T6 D" E$ Q

2 G8 n3 l# J/ R3 k, w0 O1 a

$ y$ `8 b1 r7 b- }

…first raised the problem which was later partly solved by…We now solve this problem in the case of … * B( V. k4 }) K" ]. M+ |/ p# I

' M( c0 L; ~7 F& w

v. |4 c% R1 P2 a, ~+ x! G

3.如果文章推广了别人的结果,或减弱了别人结果中的条件,则可参考采用下面句子: & d# z; e' a( K) ?5 k: T1 p9 D, N' b

3 j0 w# W% O }% D

# \0 Y4 ~* ~3 K( A8 |4 G9 k

The purpose of this paper is to generalize the results obtained by…to a more general case,i.e.,… 9 X. L( [3 W! v) _$ S

$ X4 a% ~( u$ ~3 ^# ]) Q+ D

8 P1 Y5 }" k9 j; k( Q, x1 Z

In this paper we shall prove several theorems which are generalizations to the results given by… 8 S G& i' S% E5 ?9 Q. p

5 Y4 t/ q/ I' @3 R4 ]. d" b' N

) d- O6 R1 X8 |0 n" L( u1 ~9 n0 a

This paper intends to remove some unnecessary assumptions (e.g., regularity) from the paper on… 0 w0 J& Y1 m1 B) t+ m

% k# z, D4 |- x6 H4 l% A! K

3 ^8 h9 K" x" m

This paper deals with generalizations of the following problem… # i! [5 A6 }( A( f" S& j

5 {* ~/ C: B% X

5 P" F2 a, O* ?4 q! s

This paper improves the result of…on…by weakening the conditions… 6 s) F- c& K8 V8 ] O8 p) k1 a- X% r

J/ u& W9 x( [1 m

! t$ B4 Q5 Z3 u

例: 8 y2 m' M: ` T/ @

" a8 s8 a8 K I4 w. P @

" M5 H; g. z. q: T! V

It is the purpose of the present paper to point out that certain basic aspects of information-processing systems possess dynamical analogy, and to show that these analogies can be exploited to obtain deeper insights into the behavior of complex systems. % g* p1 n3 _! Q/ \/ K$ u

8 u8 O, h( Z% ?( Q2 G

C2 D2 K) A+ `5 p# X7 |- E

We present a general comparision principle for systems of boundary value problems and employ this result for proving existence and uniqueness of solutions, stability and existence of periodic solutions for non-linear boundary value problems. % i3 P: o7 d( M5 q( @; r6 j1 J

% n4 r* m! k* p8 X, I& q/ Z

$ h9 v) ]" Y( T; u" O" w4 n, o

We proved a theorem for generalized non-expansive mappings in locally convex spaces and extend the results of Kirk and Kaun. We also obtain a theorem which generalizes the results of Brouder. W3 j( t# _: v# S" y, M

( O' g: Z K% c6 Q* \& Z

% f f+ }( ^& A. y/ y# ]- I/ L J

This paper is concerned with the existence of multiple solutions of boundary problems for the non-linear differential equation of the form…. 1 M7 ^, |- }" V. D1 l% r; i# b+ S, ^

8 a9 ^7 Q: U- L9 ^9 [5 \. i* I' p

% A# P3 y) ?. K7 f: y

This paper is concerned with the question of local uniqueness of solutions of Cauchy Problem for elliptic partial differential equations with characteristics of multiplicity not greater than 2. 8 u! Y5 R R/ A9 P/ Z: S

, A% g6 x4 }2 F+ k( {8 m

9 C3 Z/ c0 ]# C' I! \9 R4 W$ X

The object of this paper is to investigate the behavior at the boundary of solutions to the uniformly semi-linear equation… : }( r3 |3 G3 @; B8 g9 J, g% j8 q

Y2 U1 y3 ?, y) v5 ~' z3 Z

" _) O" @" O! t) a

The aim of this paper is to try to minimize the functional " a. V) {! g( j8 E1 q/ e

' S& m$ O' ~0 H) I

8 ~9 {. f9 k' U9 p

( P o |7 }( J4 t4 ?7 f# t& r0 c

7 A2 W2 u5 U2 W6 P8 [

' p Y' R8 _3 u' x

over the class of all absolutely continuous functions f(x) which satisfy the boundary conditions f( )= ,f( )= . ( k* E& U8 j3 A: W3 d

点评

kittygoodice  很棒的东东  发表于 2016-1-20 20:08
天光li  ding~~~~~~  详情 回复 发表于 2014-2-6 20:32
mongo1992  顶一下  详情 回复 发表于 2013-1-19 09:59
回复

使用道具 举报

风月晴        

0

主题

2

听众

39

积分

升级  35.79%

该用户从未签到

新人进步奖

回复

使用道具 举报

布赖        

4

主题

2

听众

134

积分

升级  17%

该用户从未签到

回复

使用道具 举报

satre        

13

主题

2

听众

228

积分

该用户从未签到

元老勋章

回复

使用道具 举报

rankvic        

12

主题

2

听众

168

积分

升级  34%

该用户从未签到

回复

使用道具 举报

summit001        

1

主题

2

听众

27

积分

升级  23.16%

该用户从未签到

新人进步奖

回复

使用道具 举报

hxo1202        

1

主题

2

听众

41

积分

升级  37.89%

该用户从未签到

新人进步奖

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册地址

qq
收缩
  • 电话咨询

  • 04714969085
fastpost

关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

手机版|Archiver| |繁體中文 手机客户端  

蒙公网安备 15010502000194号

Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

GMT+8, 2025-8-11 09:39 , Processed in 0.957663 second(s), 102 queries .

回顶部