QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 58009|回复: 328
打印 上一主题 下一主题

数学专业英语-(a) How to define a mathematical term?

  [复制链接]
字体大小: 正常 放大
hehe123        

43

主题

11

听众

1151

积分

该用户从未签到

自我介绍
200 字节以内

不支持自定义 Discuz! 代码

新人进步奖

群组数学趣味、游戏、IQ等

跳转到指定楼层
1#
发表于 2004-11-27 13:39 |只看该作者 |倒序浏览
|招呼Ta 关注Ta
数学专业英语-(a) How to define a mathematical term?: S% h( ^1 v, w- p ; ?+ l% |* p0 t- X ?! n

. A6 E- h; h) p. A7 a$ Q

+ w' @6 T3 {3 `, ?

# z( L9 Z; E% \1 w- n" e

数学术语的定义和数学定理的叙述,其基本格式可归纳为似“if…then…”的格式,其他的格式一般地说可视为这一格式的延伸或变形。 0 B. [3 i- l1 D; [ - L" f6 |3 L( ]: p8 k( Y( N ; |! N' Z3 K/ _9 F) V8 K) M" z# _6 Q

# v3 @+ c4 f5 G x$ s

如果一定语短语或定语从句,以界定被定义的词,所得定义表面上看虽不是“If……then……”的句型,而实际上是用“定语部分”代替了“If”句,因此我们可以把“定语部分”写成If句,从而又回到“If……then……”的句型。 0 q9 w) ~# S# n

/ n4 X( q! Q& Y: q

" g* e. D9 B5 x1 n* l

至于下面将要叙述的“Let…if…then”,“Let and assume…, If…then…”等句型,其实质也是基本句型“If……then……”的延伸。 - P4 \1 }0 |! {& x

2 H7 I+ O' `6 p4 g' f: O9 ?

/ o i h" r( y& c& [

有时,在定义或定理中,需要附加说明某些成份,我们还可在“if…then…”句中插入如“where…”等的句子,加以延伸(见后面例子)。 T) _7 ]: j! z0 _

+ r& @ y# x. c' k( N' c

3 g: `$ j; d" Q8 H) R

总之,绝大部分(如果不是全部的话)数学术语的定义和定理的叙述均可采用本附录中各种格式之。 4 J- W6 q1 v0 b' o/ E

3 _: |: L& D7 z6 J6 J- t

" H! U( B1 T" l4 e. y: U, }) V

6 m8 m: Y5 a7 _. r& [7 d$ e7 }

5 a! A& ?- o' z8 D3 r+ a

: I$ z) `. D4 P2 [. K4 `+ S

5 i. l! Y3 g& y/ P" v. b

" n( A( V; w# E9 J/ `! q/ W

7 L, t2 B7 X1 B+ N& ]

aHow to define a mathematical term?

3 |" e. N7 E- H# G( R- U$ e

% J- f, \* P' Y5 L. K. Q3 O

; h/ c8 O5 m% m/ G3 _ X1 P

$ t. L3 j8 ^6 Z: c/ a! c' |7 c _

" D4 j* h% _6 I0 x+ O2 X) M1 q' v% f& K- f. e) ]4 ^$ u+ D9 h3 H5 w$ U5 X7 y' U6 \3 ?
+ N" i; ?6 E+ b% y& n

is defined as 6 v1 s6 Y: I' u3 X

- c9 ~4 ]( p6 _

# I2 p# m% G8 C4 w+ ]1 _1 }

is called / ]" `. f2 ?; i

. u6 B, A: q1 r* M

3 g- y; t& N3 _# W

1. Something something 4 F9 u3 i8 b4 |

1 ]! j# B3 q* j: l; J. k |. d9 Z

. `4 i/ L* f3 Z

( R. L o: Q* Y

' @( S }+ Z5 y6 L7 x& I

$ C2 J' A5 x( T* v6 B' C

# ?7 R. E& ?+ I( `: F. X1 q5 I4 E0 O

( ?8 z2 ?- Q p3 a! j

7 q* `3 v6 K2 p3 [" a- n

The union of A and B is defined as the set of those elements which are in A, in B or in both. 3 f5 D3 g: `6 b% d7 k

/ O" `. k1 S/ {0 e9 r5 G! B- a) r

8 q+ L( e4 x7 g

The mapping , ad-bc 0, is called a Mobius transformation. 0 q5 s9 J- Y4 [- r2 c* V

+ s2 _" U* \) i% f7 j$ {

: o2 X7 z4 r; C) q' s/ ]

9 A3 U" L, B! g t) Z4 M; r; |( U" u* |1 h/ t+ V5 _, S9 x' a" L/ F2 H) e5 V9 G
, f* B$ q1 I( q4 ^4 x

is defined to be 0 l4 B7 v0 u0 x! \# O. e

) U6 m% r- ^: I7 k0 n' f

; P: y' @: ]; ?2 d

is said to be : p+ S7 m0 J4 h

; l5 {+ A# U: h

8 W& A) ~* a- E2 L! b

2. Something something(or adjective) 8 W5 {. w% ^# \* G9 l$ p

! ?1 ]% s, y, A& }4 x0 V: t( H

# z! J- O' G1 G7 l

4 D, } C3 y5 W7 ^$ j! W

/ C; {& ?) H; P

' H" }9 W; p2 v- n/ L2 b# Z! D7 o

* ?# v$ |* i& W# ?7 n

; \5 U& F% {# y# n* `& v

! q6 _, [; G. k- z9 {) O. d2 X

The difference A-B is defined to be the set of all elements of A which are not in B. $ l5 T9 S \+ i5 L8 p

. g& G! z! Y! d2 u

" ~/ E! t8 f* t! T8 ~

A real number that cannot be expressed as the ratio of two integers is said to be an irrational number. & A# {: F- d2 h

7 Q$ _( J6 ?0 }

( B T3 J1 C/ R0 ~7 w+ Z! _- f4 l' i4 z

Real numbers which are greater than zero are said to be positive. 0 q* E) d) D* Q

% y2 ~/ }! N; y/ u

; ]4 [3 Z% e2 ]4 K1 D0 N' ~- ~& ?

, s) K) Q4 _& v+ w. S! Y% b, |2 h5 F# k* R3 u; ^8 f5 b7 E( T! m/ U; L- @
4 B3 R( e; {$ O/ w: b8 g2 Z

define 7 \% d G) r2 C+ m* e

3 W& j n! T8 c

3 `- m" K& q" ~

call + e0 O( C: Z8 \' x0 l( t: I6 V

8 _9 j1 |9 U! Q" q

1 R6 I! E) r' W

3. We something to be something. ! W# v* M6 S4 e

/ e- N0 D) y4 M7 M, c7 u

) v$ ~2 {1 ? r; V- A8 t0 s* M

, }( C/ b2 { u# u3 Z6 N; X3 K

7 b2 s7 I! g3 E- \6 \. U& J0 d

8 S+ V$ n% M* ]$ K/ ?5 z6 R( f

2 \. p- r2 S1 w y% _

( E* Z7 u4 w& ?2 A8 R! g0 n/ e

/ Q& u9 [ L e t* t* `2 b

We define the intersection of A and B to be the set of those elements common to both A and B. ' z& u, K# Y4 b

2 i. |1 p V8 q1 l( a

4 ]9 x1 a% r1 o& }- \

We call real numbers that are less than zero (to be) negative numbers. 4 [+ \% @# w: J1 I6 j# |

, `2 O8 g0 K- O* l

* _0 L5 I3 S. h1 Z* h

4. 如果在定义某一术语之前,需要事先交代某些东西(前提),可用如下形式: 5 s$ b2 U; w; N9 Y5 t

: F5 L5 S+ K0 l3 h$ _6 O

0 e6 k; A" {0 A! k7 ^

& I+ M, T+ W1 W. u

6 c- d) M% D# T! O/ U

+ p+ h* R- n* |8 x: R; ^

, g* ?7 O% w7 R! @; |, s

! a0 N' M c" v. b! J+ m

+ W8 t# z0 v! l* Z, [" l

0 k' T( E3 q$ p# o- A$ M1 S( v; B, W, w3 a) Z) m/ c/ n* W, `4 \0 u5 B1 a0 D9 X2 i: x
m9 p o/ R6 \- \5 P2 }/ u

is called 0 y! E/ q1 q8 F' u' r: P

9 m$ J( A R* I- |/ M; E

& B6 `/ x; {% P" t4 [0 S" `

is said to be - }. x6 D5 ?" H @. S. R2 J! @

- ` {% u4 u m7 }: S

1 ^7 @* ^; }, v9 G/ Z$ ~

is defined as " r1 d7 m2 y8 b L, \* M: @

0 f9 a, a3 e, c

& A$ F+ Q4 s2 T

is defined to be - Q; W- T; a- g, ^7 f

' W# i; O' ^8 o @

6 Y) C% U( }! l4 z" n

Let…, then… - ^$ ~" W* y% K- v& E" q2 r2 I

, p8 r3 C8 R) W$ w' N# n

9 W" [' F' I N% r# w3 [

# M0 R* {8 p+ X% N) ]

0 j; k" B. z% L4 f2 N, N

( J# u. g1 i h3 B) d5 `+ I2 n& i: E

0 v) W# ^, Z9 y; d0 {

! O3 m: o8 A1 i

s4 n: k3 q X

: x% _2 U7 ~) \* N, ?

2 o& ]- ?0 U+ V& R

$ H) a/ [* ]- A9 x$ f5 z) H1 K# }

' A8 M% q- {7 c; M e

2 J a; A0 r; O* G L

, d) S$ j% K& ^8 N3 {" N( v

Let x=( ) be an n-tuple of real numbers. Then the set of all such n-tuples is defined as the Euclidean n-space R. 3 ]8 B p9 L, o2 X* ]+ _! v8 r

/ v& u1 O9 j# b! n: p$ t o

5 H9 v: T- M6 t

Let d(x,y) denote the distance between two points x and y of a set A. Then the number r" t! a( K% b7 e9 P3 D

+ D( x @, e2 ]" O; f3 m8 d

) x' y3 [% A. }* K5 a

D= 7 Z* D; a1 ]* Q( C

( d( x+ o8 m) Q

' E4 D$ T) n7 S6 o7 F: N+ G: u

is called the diameter of A. 4 k& f, {! W: l/ {/ I4 X5 E

0 h1 i( N! B+ s" \. M

( Y2 ^& V: ?8 Z

5.如果被定义术语,需要满足某些条件,则可用如下形式: 1 Y0 w* h M& [

. A& t! F$ c2 m( v

2 ~4 R. U) f Q8 k: G% c

! u; |/ X1 |- @" M6 B4 F' e0 G9 l& r0 l; g1 Y7 P6 |6 E6 g+ }) _6 Y! ^# G( t4 R3 \: P
- T2 W7 J" q. z6 `6 Q/ M

is called ; S1 k$ F$ X& `6 K- e! o( n2 r

- B+ `$ Q5 [0 L! @, g: x6 G

2 `6 q9 {8 M4 f# Z7 E0 M

is said to be " f) p+ i- x2 U; Z" A' A8 a

/ [ ]$ q0 T+ H5 F

# R; @. I3 N+ }

is defined as 6 a* y4 H, A% }0 G3 S0 }9 N$ [( x

3 @1 Y- f0 f! N. l( ]) ^$ O- Z& z

, A! m0 v$ G0 C: \5 A

is defined to be & Z" C# Q, {. a4 A' l5 o8 h

% R ]) u" ?: ]4 ^9 o' x# x0 |

% m7 N1 r' A* w, e

If…, then… " D" v k. ~# o B, Z0 S% V" b

# Y: M9 r+ t: l B$ ~; I: u

; @- M0 q' M. S- t1 k, K

$ M& _$ }! X& A- s9 _! w

# a1 } q. U5 K' Q- p" a. J- x2 y

_7 M1 q1 T& J# N) S

2 _% D- [2 B- {: c9 {' @' p8 H f

2 N& k# w$ A6 v9 V z0 D! N& ^

" D+ q1 r5 C% ^( G0 P1 [

8 _) G1 H& a! S) F

5 d( Z* L4 e6 A" @5 F

6 I! b! j" }( a6 J6 @6 i

) \4 E5 c- _3 Y0 W, r9 ] q& e

" U0 ?$ V% Y7 R7 @7 A

0 k, X7 y2 E* f6 c6 i: `

If the number of rows of a matrix A equals the number of its columns, then A is called a square matrix. 0 r2 [! l* t% J. W# D; C( f, ]

1 n* x( q" }: P2 f4 i3 N/ U

p& h8 `, j) G {- }2 l6 X9 d

If a function f is differentiable at every point of a domain D, then it is said to be analytic in D. $ \" G! R% X9 a3 S) _

9 s4 Z1 N/ _9 Z* b/ t( F

* z1 `7 k+ P( _1 l: y' z5 N

6.如果需要说明被定义术语应在什么前提下,满足什么条件,则可用下面形式: , p& p9 `( n7 C# G1 W

$ U1 h, ~+ p% w# L

' L; C) C0 }' m

) \" H7 _' i8 X

5 M$ }7 q) L/ Q/ v( s. G3 i* R" o" C0 }/ o' k0 g" s. Z) U* m& [8 B9 C/ G
6 y! Q, s- V: F7 u9 E6 z* I
" r9 l7 F8 v$ z0 ~/ U

is called

# o$ S4 e8 x, D1 g) M* [: @

is said to be

( m- l) z, |! M " s7 ^: N" D% s8 [7 u2 A' F& L' \1 p" s& k o1 R$ n) |' h, p
3 F q% G @ i0 o9 J
& r' h, ]% b1 P& g J

Let

$ i. K* b6 z5 w9 Q; T1 q

Suppose

…. If…then… … ) l; T) }4 L9 i7 b9 t9 u% u

% |- m$ G2 t( a1 A$ n3 k% O

; v- I7 o6 m; N3 c# U' t: G

9 b8 B3 |# w' \" Z; @# P8 n5 W

8 R, T# c# \7 R( W) q! e: b

: q4 z6 u0 w1 F/ [; W0 T7 |0 V

+ A; G5 n" m, t# X& F9 M

/ Y( J) F K' Y4 D6 |0 k% E0 V

4 W( [# t9 N# R

Let f(z) be an analytic function defined on a domain D (前提条件). If for every pair or points , and in D with , we have f( ) f( ) (直接条件)then f(z) is called a schlicht function or is said to be schlicht in D. ; h- R% p) R0 a/ p& w9 |

8 Q% I6 p( ~) I

( }0 k5 P1 c4 T) c8 s- Y

/ d* M6 L3 C* }* ^2 G+ z

G: V) `8 ]" ^! v

zan
转播转播0 分享淘帖0 分享分享4 收藏收藏24 支持支持7 反对反对1 微信微信
hehe123        

43

主题

11

听众

1151

积分

该用户从未签到

自我介绍
200 字节以内

不支持自定义 Discuz! 代码

新人进步奖

群组数学趣味、游戏、IQ等

7. 如果被定义术语需要满足几个条件(大前提,小前提,直接条件)则可用如下形式: 8 V1 E2 b8 b& S; d& Q

suppose

assume

Let…and …. If…then…is called…

Let D be a domain and suppose that f(z) is analytic in D. If for every pair of points and in D with , we have f( ) f( ), then f(z) is called a schlicht function.

Notes:

(a) 一种形式往往可写成另一种形式。

Let{ }be a sequence of sets. If for all n, then{ }is called an ascending or a non-decreasing sequence.

我们可用一定语短语来代替“If”句,使其变为“Let……then”句

Let{ }be a sequence of sets with for all n, then{ }is called an ascending or a non-decreasing sequence.

(b) 注意“Let”,“suppose”(“assume”),“if”的使用次序,一般来说,前面的可用后面的替换,但后面的用前面的替换就不好了,如上面句子可改写为:

Suppose{ }is a sequence of sets. If , then{ }is called an ascending sequence.

Let{ }be a sequence of sets and suppose that then{ }is called an ascending sequence.

但下面的句子是错误的(至少是不好的句子);

If{ }is a sequence of sets, and let , then{ }is called an ascending sequence.

(c) 在定义一些术语后,往往需要用符号来表达,或者需要对句中某些成份作附加说明,这时我们需要把定义句扩充,扩充的办法是在定义的原有结构中,插入一个由连接词引导的句子,这类连接词或短语经常是“and”,“where”,“in this (that) case请参看PARTIA第一课注1和第二课注456

If every element of a set A also belongs to another set B, then A is said to be the subset of B, and we write

A real number is said to be a rational if it can be expressed as the ratio of two integers, where the denominator is not zero.

(d) 在定义中,“if”句是关键句,且往往比较复杂,要特别注意在一些定义中,“if”句又有它自己的表达格式,读者对这类句子的结构也要掌握,下面我们以函数极限定义中的“if”句的结构作为例子加以说明:

If for every >0, there is (there exists) a >0, such that whenever 0< , then we say f(x) has a limit A at the point a.

上面是函数极限的定义,其中的“if”句是它的典型结构,凡与极限相关的概念,如连续,收敛,一致连续,一致收敛等定义均有类似结构。例:

A sequence of functions { } is said to have the Cauchy property uniformly on a set E if for any >0, there is an N such that whenever n,m>N.

当然,极限定义还有其他表达形式但基本结构是一样的,只不过对句中某些部分用等价的语法结构互作替换而已。

下面是函数极限定义中“if”句的另一些表达式,读者可把这些句子和原来的句子作比较。

If, given any >0, there exists a >0, such that whenever (if,for) 0< ,…

If, corresponding to any >0, a >0 can be found such that whenever 0< ,…

If, for every >0,there is a >0, such that 0< implies .

回复

使用道具 举报

hehe123        

43

主题

11

听众

1151

积分

该用户从未签到

自我介绍
200 字节以内

不支持自定义 Discuz! 代码

新人进步奖

群组数学趣味、游戏、IQ等

数学专业英语-(b)How to state a theorem?

数学专业英语-(b)How to state a theorem?, ~6 k6 H( @# ^; {5 o 3 k/ F. p6 c) S8 `7 k

$ O8 b+ { F- B3 ~ v i

! r2 ^( m. e* f

; q: R' S2 V6 W

定理叙述的格式,基本上与数学术语的定义一样,只不过在术语的定义中,“then”句有比较固定的格式,而定理的“then”句则随其结果而变吧了。 / `. ?: J6 @3 R& _ C5 _9 P7 A- f8 k. h) r1 z g$ s- t" R3 f3 e 6 N5 z5 Q3 [, p5 `

8 F! \, z: g4 {- T) D: G# X

1.某些定理可用简单句叙述。 ! g4 W) R7 l+ C+ O6 L

, ^4 X& N7 S2 K. K

# l/ P% v, n$ C8 g* C

The union of a finite number of closed sets is still a closed set. / D+ w* M1 O/ T

: J9 w/ h1 ]( i8 c) V

* N3 t* W W+ H. W. k# E8 q9 \

The space (E,f) is complete. & V. e( u% x+ \

! @+ D7 M o; e+ @

# |- a. j' `5 M( c

2. 如果定理的结论是在一定前提下得到的,则可用下面形式: ' F+ Q& T/ h/ u

1 o$ i* B* v; u Q- D8 p2 e% L7 T+ U, R

. N6 i+ w5 ^5 h0 J2 l

“Suppose…Then…”or“Let….Then…” 6 d3 j% a8 C( i

* U; q3 L8 s* c* e E0 k# R

9 @7 ^/ B8 H* R5 g9 i

Let f(x) be a continuous function defined on[a,b]. Then f(x) attains its maximum and minimum on [a,b]. + C. [5 O3 E5 `& }+ x8 A# h

; U- ]$ i# L# I9 X9 F7 N

! f0 F1 y0 s0 V. H' `

Suppose that f(z) is analytic in a simply connected domain D, then for any closed simple curve C lying within D, we have 1 B* f* t# s# }, e: J5 o

: g- {1 F2 X( o+ x$ W, }2 T

( h2 ?1 W$ \9 B+ n& ?/ h7 c% v9 j

! R; w+ U! M1 ]2 y- U9 o4 Q

8 t/ _4 b! a4 O

& Q' z9 L/ N& C

3. 如果定理的结论在一定假设条件下成立,则可用下面的形式 : z9 P" z* o2 u4 I

/ u! o; e- c, Y2 x; D

3 }$ X; n6 g' A" f1 v4 T/ k! N

“If…, then…” $ A0 ]& ]# t. q0 _3 d* S O$ p

# W* H! ~! h+ H P Z

% ]1 o. I3 x; @; T% q

If P(z) is a non-constant polynomial then there is a complex number c with P(c)=0 6 W# {+ X6 x2 J% u% F0 s1 i

$ |9 r% s5 |- C7 g1 V- z- y

6 {( b! i: r) f3 E6 u3 e7 r3 \

4. 如果定理的结论除了在一定条件下,还需在一定前提下才成立,这时可用如下形式 9 r* w- |) N8 T

/ T; a8 q5 l0 F: [8 D

. E; g( q: |( X2 \- ]1 }; K

“Let…. If…,then…”or ! f1 i) s# w! w U

. R, C4 G# ^3 ^$ _) Z

5 i. V! C1 X v7 g* D. g7 a/ |

“Suppose…. If…,then…” 2 M" y, ~0 Q- {

; |' i9 z6 u4 C6 m& q2 l

* T% A) F! i- c6 ?' V+ E

Let , , , be four distinct points. If all these four points lie on a circle, then the cross-ratio( , , , ) is real. : y! S& L9 q3 f$ {6 |

3 ?% i% a, \' d2 s* l. k

k* ?% w X* i) K1 v4 D. i" \5 J2 Y8 ?

5. 如果定理的结论在不同层次的几种条件下面成立,可用如下形式: 9 D* n" f B0 w* L8 ?( G+ ?" u% d) `

# Q3 s" W# a8 O7 f6 r- [) h, }

/ n y; k: h3 C* b. O4 q2 D

“Let…, and assume….If…then…” . C3 R, ^8 T& a

7 p. c( \& A# u; X x+ g

r- u' r/ S- Q2 W2 ~ @+ `. p& w

Let f(x) be defined on open interval I, and assume that f(x) has a relative maximum or a relative minimum at an interior point c of I. If the derivative f’(c) exists, then f’(c)=0. ) Q# g3 ?6 F# v

; B& M, N- R3 ]3 f9 z* M

3 j* B& W# A6 C

2 V; A* b8 ~5 q: P C s$ N0 h- {

( _' q' j+ F A7 {

回复

使用道具 举报

hehe123        

43

主题

11

听众

1151

积分

该用户从未签到

自我介绍
200 字节以内

不支持自定义 Discuz! 代码

新人进步奖

群组数学趣味、游戏、IQ等

数学专业英语-(c)How to write an abstract?

数学专业英语-(c)How to write an abstract? : [* g" G! c' e$ M3 \2 z + n+ p2 T- K. A2 l# ?7 V

# t, F" |+ R0 @: r1 J. |5 t

+ Y' I1 A* K/ [: ?9 l

: N, {4 M+ X' d5 c" A! p( y

论文摘要的写法不像数学术语的定义和数学定理的叙述那样。有一定的格式可循,但对于初学者来说仍有一些常见的句子可加以摹仿。现略举一些这样的句子,并附上一些论文摘要作为例子,供读者参考。需要指出的是,我们这里所举的例句对普遍的文章均适合,比较抽象,具体的论文摘要除了可用上下面某些句子外,必须有具体内容,更确切地说摘要中要包括一些 key words 以说明该文涉及的内容,但一般不要在摘要中引用文献。 7 [* l. v0 P; M: D. w, u+ ?0 Z! y" {% l" \% Z) Y3 _3 q) T : {, x7 b; w9 T" w

! C( `& S2 H {9 K2 j( {

1.开门见山,说明文章内容,可用下面的句子起句: * W6 F# ~8 M- O, V

; V1 k' N9 B2 W, G5 r; W, x" T

% b8 Q- R% T3 ~; s

: t. `# F: g- U2 B% \9 K

3 y. i: z# X- o: ]1 y# v$ Z1 Z$ E! i5 T5 ^1 a% c$ B/ G& U' E& o; f% a: T% ]3 z7 [) t
/ y5 @" _& b( k' E1 X9 B
. y6 a8 {2 p0 R$ o1 p4 R

prove

) H3 k* b) C6 i8 N: t" g) t

show

7 V) q$ Q: s; S* D) b0 ~0 v0 t

present

0 s) e, F- \. G/ A/ g4 ^$ G8 H

develop

; ^% D/ S( f/ r- q1 J

generalize

# H x. Y1 [- ]' M% F) F

investigate

& b$ k6 d) p/ F# \" I

]" R: N. h7 l* e" P/ ?

9 l- V9 O9 c0 I0 L

0 y% x7 B0 `* ^& s0 P& M% K 0 }! e" y) v: r2 s' D2 Y1 S2 ?+ ~6 M# S1 H% f, n$ N- A/ K1 ?" V& g- k5 E% K( A
9 V2 z* z) G7 y" [9 ?& ~
& B8 t' j. A( i* v0 B1 f8 {

paper

: }1 V. ]& Z% X% s- `. g# w

note

4 `; o- b: P* Q, `, e' z$ h6 w: c' _0 q! ^7 k6 ^. X$ J$ F8 O& p) o5 e8 Z) U% u" S! D
7 ?; X2 _& N8 V1 D: ^; a
, B% k; K0 _+ f9 M* D4 U+ T& D9 w+ ^

aim

% O5 e) {) H5 F" O4 q% u

object

% J h! `! i: \6 a( H

purpose

The of this is to … $ v ? E* P; o3 f, G" h

^4 N1 H" X J7 P' o8 P

! Z5 t! I/ b* F4 y7 l0 Z

4 X) @3 V1 S+ W; t0 |% ~

9 l% W Z" p7 K8 Q

9 q! f1 \5 k3 ]

- V3 |, I- c5 t8 y$ U

; g/ u9 P, w m) ~' O

7 w+ Y, ^$ X9 d2 @

5 F8 A- R3 j- U6 j5 M

5 c3 \# h/ W* B d6 b: P: ^& N

8 L4 Y0 X% i/ V1 @( ^

9 r) Z: h2 S/ k, j# Y

3 J. P1 u3 ]% d* t T

7 t8 T: q+ o5 f1 ]

I( k0 o! C: q2 T o+ o

( J' K0 s' a" _, m# f% C' S

: G+ ~3 R+ z6 D3 E" O% i* a

5 }- D% e2 U" b j! A; l

6 B* z/ K F9 S. S, j

: g. G) c9 H% u2 l" Q. ^

- X& p- Z" E9 I3 j+ k, ?5 e

U$ w5 u6 }( C4 P# ?( X9 c: b% k+ h4 B. H% S$ }# M. Y. L
3 v% h$ Y! I7 m6 V& K7 {
% a. I6 d/ k, }- v! d: ?$ T

prove

0 t6 H8 y! I3 [

show

- {4 H/ T; ?/ K1 y' R

present

! \4 E1 \+ {* |* M1 C

develop

$ Y7 \3 U, U: I5 f

generalize

0 h8 h+ U$ o. o- _) s+ M* V5 u4 E

investigate

It is the purpose of this paper to , k" q' H$ n4 U0 X1 u( b

# p2 I* u4 ^, v% v S

2 t( ]( X+ g8 n( C+ m. h

$ t/ x, L" T* y* v" b1 j- S

2 y0 P" Z* z9 L4 u4 [

* q2 W+ o0 h& q/ |7 C1 ^6 t

# Q7 {" X Y; v# j; G

; `3 J& S6 X c# X

# h+ }. `# f' H* Y& j8 t

, u6 {; N- k E( ^2 a

" b: f% v# \ \, [3 j; |0 C( x

7 l H8 d: K6 g+ n' m3 s

/ @2 e( A6 T h8 ~

. c: w6 D6 }3 i* ~9 i5 [; T2 {, y

$ R" S6 M5 \, _& t, m8 R) s

F' F* Q2 I8 n: }, v- B9 n$ N

4 K$ N; B1 f% |( s9 N

% U8 W5 ~" G8 S% M" o0 H$ n! ~

: u, X% k" ~* [2 u+ L$ y$ E' s

2 m+ w2 j V. n9 o. ^

3 |9 [2 c3 E* S- ], C7 g/ g- }

3 h8 t2 ?; \0 }4 C; S S

9 o4 }8 F6 k" ?2 m$ U q: Z+ `3 e3 w* w& c {$ b3 W, \5 E% w) o' E8 K" u) ~) c
# w& I0 r4 l$ K0 o9 V5 i5 X3 F
/ Z: } c0 `5 d0 F, B- v

is concerned

3 P5 e* ~3 k" c; o6 c1 F4 ^! O$ B

deals

This paper with… ( Z$ B6 S% h+ c

' E8 Q/ G5 i1 |/ r

& j) w( N" ?- R/ v9 z2 i# x. Z# \

+ }) A; v9 {2 {# O9 d. ~* J6 h

. U" M3 ?; b( o; `; [0 D9 b# p( L

8 y1 ~9 h. n2 f

. A$ i: o" i' c j# C- X4 F8 D2 s

: L$ K+ k- C3 s. e

+ E# D+ O) J2 p& C, ?4 k1 Z

! Z/ V) m$ D2 g2 h% T

. x w+ f0 ^, P- y4 K, B" B0 F1 W+ E' d/ `" S2 r/ h5 A) e* l: m1 J/ {7 Q+ a3 ]
' s! Q y2 r2 _7 C" Y) G
& S) y0 D6 @9 T& d8 w7 v

prove

& n; f" n: A* I9 q

present

v( X+ ?9 z" ]* U

propose to show

In this paper we … 9 b) J. x! T, B9 P g$ h7 J( L9 |% B

6 n! ^# F$ O: G; k: E

3 i$ D1 z4 W: ^ t

" S. f2 `5 n$ V# b. h; b

" J8 F' w" H: p+ g

' a V" H9 r/ s& z' I* m$ n+ T

0 \7 _3 f$ B. t/ a' ]0 i1 z+ R

6 P8 U( j- `" A7 n% m9 b* y

# o1 ^& s3 h9 l* n4 ]4 s$ Q; c( j5 A

( }5 ~2 ~- U% o) A. ~

S8 \' Z4 K- c7 U$ w. O

+ H7 K+ U9 Q8 S' d1 h/ a

2.如果需要简略回顾历史,然后再说明自己文章的内容,则可参考采用下面句子。 $ C+ E4 h& c5 z% t2 o3 R" L& W

; ]/ T' R( C4 ]$ {! T0 H9 r

: B/ X7 ?+ J6 h) \

The problem…was first treated by…and later…improved by…The purpose of this paper is to prove that it holds in a more general case. + G% K" ?, O$ M8 X6 _/ v) l

2 S4 J. b* H) }! W4 m. X$ p

9 U6 W8 d0 o0 d9 E

…first raised the problem which was later partly solved by…We now solve this problem in the case of … 0 \4 q* n" {3 Z- R2 g" T

7 a+ p! x) X7 X7 J' {6 z! s% {

; t! y- ` c9 c5 T

3.如果文章推广了别人的结果,或减弱了别人结果中的条件,则可参考采用下面句子: ) z( j( _/ `7 e. N

; L/ q8 Z8 Y! y( Z) W1 I3 U: ^

$ G2 K2 h7 U, A9 d

The purpose of this paper is to generalize the results obtained by…to a more general case,i.e.,… - s# Y* k" k3 o: `5 r

. m$ q2 Y; ~8 \7 @4 H

6 ]8 x( W% W8 {( W0 w" Q# d+ C/ }

In this paper we shall prove several theorems which are generalizations to the results given by… 6 |- o! v' a" w# H# _# C6 P

o* ?! I1 \4 D( f6 u6 c

7 m! g4 @$ \& _* `1 e$ d

This paper intends to remove some unnecessary assumptions (e.g., regularity) from the paper on… 2 ^- a8 X/ r$ r

7 S5 [7 R9 _* q. `

" y" ?+ ^% T+ r( G; ?, X! h( }

This paper deals with generalizations of the following problem… ' h; G: @" p$ S

5 V& X$ d. E: a: X( Y# R6 j

5 N0 L8 Q- ?6 \0 c

This paper improves the result of…on…by weakening the conditions… 7 {, X& O& v3 I% v9 q

/ i" {/ O8 s. a! m

. i( x+ |% W. I7 q: Z2 N6 R# b1 X* b

例: ( e' g8 |4 V, j! Y5 o+ {, z( r

0 K, z E" y0 k4 z4 s% E0 B

" R9 e) W( V/ [& _2 l

It is the purpose of the present paper to point out that certain basic aspects of information-processing systems possess dynamical analogy, and to show that these analogies can be exploited to obtain deeper insights into the behavior of complex systems. : E" U8 K% B2 ?

# T0 ]2 G. E9 |% J) k# j' C1 ^

9 T- h( l& K" M

We present a general comparision principle for systems of boundary value problems and employ this result for proving existence and uniqueness of solutions, stability and existence of periodic solutions for non-linear boundary value problems. % O! @# @, S+ V# i8 A

8 Z% F4 Q6 i z: l, {! ^$ p/ u

0 C+ T0 y( m$ c$ L5 A

We proved a theorem for generalized non-expansive mappings in locally convex spaces and extend the results of Kirk and Kaun. We also obtain a theorem which generalizes the results of Brouder. $ j# D7 g u0 b7 @1 t

# T- y( G; o8 J

9 ^0 I9 a% P* K: j) J

This paper is concerned with the existence of multiple solutions of boundary problems for the non-linear differential equation of the form…. . |5 J+ ?+ l0 ^0 L' M7 h

& A2 r4 ]4 V4 H. S# j. o

/ p) |5 a2 S5 J4 T

This paper is concerned with the question of local uniqueness of solutions of Cauchy Problem for elliptic partial differential equations with characteristics of multiplicity not greater than 2. . B9 T; E/ u7 T

6 O5 _2 N+ U& l4 P5 ?% s% t5 A

/ i% u w7 v3 }& R9 C

The object of this paper is to investigate the behavior at the boundary of solutions to the uniformly semi-linear equation… ! L2 M+ P9 |5 J5 k4 j* K! B

/ X8 b$ i1 S" X% t/ b

4 a+ K% \' K7 x, G. q1 m0 t

The aim of this paper is to try to minimize the functional ' P, w( |$ Y+ Q/ p! S

8 O0 c: w5 m% X; i5 `* R/ ?

( [' [4 Z+ _- c6 X# w6 }8 k

9 T# t5 ^2 C, ~- ?9 W

0 a$ H k1 ]' i9 k0 V

$ q! C- k) C! y- L, ~9 t! B

over the class of all absolutely continuous functions f(x) which satisfy the boundary conditions f( )= ,f( )= . 5 [* U, {% r3 b- `2 d) Q. Q7 A

点评

kittygoodice  很棒的东东  发表于 2016-1-20 20:08
天光li  ding~~~~~~  详情 回复 发表于 2014-2-6 20:32
mongo1992  顶一下  详情 回复 发表于 2013-1-19 09:59
回复

使用道具 举报

风月晴        

0

主题

2

听众

39

积分

升级  35.79%

该用户从未签到

新人进步奖

回复

使用道具 举报

布赖        

4

主题

2

听众

134

积分

升级  17%

该用户从未签到

回复

使用道具 举报

satre        

13

主题

2

听众

228

积分

该用户从未签到

元老勋章

回复

使用道具 举报

rankvic        

12

主题

2

听众

168

积分

升级  34%

该用户从未签到

回复

使用道具 举报

summit001        

1

主题

2

听众

27

积分

升级  23.16%

该用户从未签到

新人进步奖

回复

使用道具 举报

hxo1202        

1

主题

2

听众

41

积分

升级  37.89%

该用户从未签到

新人进步奖

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册地址

qq
收缩
  • 电话咨询

  • 04714969085
fastpost

关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

手机版|Archiver| |繁體中文 手机客户端  

蒙公网安备 15010502000194号

Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

GMT+8, 2025-6-21 08:11 , Processed in 0.665966 second(s), 102 queries .

回顶部