要求从1开始,最终回到1,且路径有方向,要求所有路径都经过。
9 Z: O0 p, i5 J: O5 ~以下是lingo的代码/ B+ J! N+ d5 j5 J9 Y
sets:/ d# C) \* o9 b" v7 F
nodes/A,B,C,D,E,F,G,H,I,J,K,L/;
2 G" F/ W- l$ O' S& Jarcs(nodes,nodes)/! U( `8 C7 F/ w5 [, m2 E. c
A,B A,E1 w+ V4 b6 G. C) @
B,C B,E B,F
; j* G# ^" U' r( D$ jC,B C,D
. N. B% B5 G6 t( W: k7 S6 }$ KD,C D,H
/ b. J; j, [" hE,A E,F
1 _/ P2 I, e& |8 \F,B F,E F,G F,I F,J
2 f1 {- \2 `0 b2 m; f! LG,C G,F G,H G,K
8 I( d l! d5 U* \; A! dH,D H,K H,L2 D4 b* F# n( {3 i/ P
I,E I,J/ U0 {+ {* ~2 j$ C$ ~
J,F J,G7 r& W. t' }! R: X8 i
K,G K,J6 K9 |9 Q* k& \, C5 W, b
L,K4 r: S6 o2 V! K
/: c, x;" J, C4 T2 Q# a, d. F
endsets
) `. Q1 ~2 |# D! A D. ~data:# W/ _# H4 }: O) U7 I3 i, [
c=
# v6 ]. v5 c5 B- U150 165
( K" f) h t: ]9 }130 230 160
; ~4 B7 |( W! w6 v i140 100
$ S( L8 c7 b+ q* Y/ s5 Y; o100 190- w& z1 l) b7 ^1 H. O0 g
165 144. |& X5 n z- F
170 144 128 218 174
( R c' l7 M/ h200 122 109 185
8 V2 ?+ f+ {! ?; T) L: h) e180 141 1904 [0 U4 N) }/ u b" A& |, i! e' @
194 148
1 i+ x8 ^. E. b( ]174 2339 C" W( l5 u6 R
185 135( a. h4 N9 i+ b. e. v7 |8 _: }
110;) C M4 ~% {5 z" z4 Q) a: R
enddata
4 ~( `$ B$ b" ^4 {! Vn = @size(nodes);2 E4 l2 v: h- [1 T5 w; b
min = @sum(arcs: c * x);4 O" e N% ]/ p( u( X8 f1 S
@for(nodes(i):' C% G2 z {3 a! S4 U+ c n
@sum(arcs(i,j):x(i,j))=@sum(arcs(k,i):x(k,i))- e$ y p" i$ r+ D+ k
);" Z% [& e* I! V
@for(arcs: @bnd(1,x,9));
( M4 ^- t6 l. f+ a
! N: q- B G; K" e1 j3 N* C它只能算出路径的步数和路程,并不能得到线路。希望能用mma解决这个问题。 --------------------------------------------------------------------- 自己用mma写的程序对于四点还可以,但是扩展到12点实在繁琐: 4 b% `2 X1 L- V7 }! L$ ]- Q/ n \
P11 = {2, 5}; P12 = {150, 165}; P21 = {5, 6}; P22 = {230, 160}; P51 = {1, 6}; P52 = {165, 144}; P61 = {2, 5}; P62 = {170, 144};(*只考虑1、2、5、6四点,P11为第一点“可去往的点”,P12表述对应的路程*) open[q_] := Module[{i = 1, randomD, randomP, D, randomreal, p1, p2, p5, p6, c, u, Df = 80000, uf, path = {1}, pathf = {1}, pb},(*随机搜索*) For[r = 0, r < q, r++, {p1 = {}; p2 = {}; p5 = {}; p6 = {}; u = 0; D = 0; i = 1; randomP = P11; randomD = P12; While[ Length[p1] != 2 || Length[p2] != 2 || Length[p5] != 2 || Length[p6] != 2 || i != 1, randomreal = RandomInteger[{1, Length[randomP]}]; c = randomP[[randomreal]]; AppendTo[path, c];(*Print[path];*) Which[ i == 1 && Product[If[p1[] != c, 1, 0], {i, 1, Length[p1]}] == 1, {AppendTo[p1, c]}, i == 2 && Product[If[p2[] != c, 1, 0], {i, 1, Length[p2]}] == 1, {AppendTo[p2, c]}, i == 5 && Product[If[p5[] != c, 1, 0], {i, 1, Length[p5]}] == 1, {AppendTo[p5, c]}, i == 6 && Product[If[p6[] != c, 1, 0], {i, 1, Length[p6]}] == 1, {AppendTo[p6, c]}]; i = c; D = D + randomD[[randomreal]]; Which[i == 1, {randomP = P11, randomD = P12}, i == 2, {randomP = P21, randomD = P22}, i == 5, {randomP = P51, randomD = P52}, i == 6, {randomP = P61, randomD = P62}]; u = u + 1; If[u > 11, Break[]]; If[Df > D, {Df = D, uf = u, pathf = path, path = {1}}, path = {1}]; } ]; Print[Df, ",", uf, ",", pathf];
, \; R# h3 k* h, zopen[1000]
- T/ t/ i: D: K [0 ]# a2 F
! @8 D3 h) e9 k5 s1 O |