- 在线时间
- 2 小时
- 最后登录
- 2015-4-26
- 注册时间
- 2015-4-24
- 听众数
- 8
- 收听数
- 0
- 能力
- 0 分
- 体力
- 6 点
- 威望
- 0 点
- 阅读权限
- 10
- 积分
- 2
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 1
- 主题
- 1
- 精华
- 0
- 分享
- 0
- 好友
- 1
升级   40% 该用户从未签到 - 自我介绍
- 程序猿
 |
利用BP网络训练加法,代码如下,我是按照书上的公式敲的代码。对于最终的实验结果,有的结果还行,有的结果误差太多了,有人能帮我看看怎么回事吗?万分感谢!
7 S& D! q2 W bps:不要吐槽语言。我知道这是c c++杂交体。 - #include <stdio.h>
- / u\" o+ ]* A ~ k#include <time.h>
- ) k1 c* t! }: E; ~+ E( V#include <math.h>
- 4 ]' D2 Z' |\" B8 ~2 s$ @) g. |#include <stdlib.h>
- + O; j3 v* K7 I! w# u\" \#include <iostream>/ K2 t% i$ Z6 z
- using namespace std;' F! }% Q/ C( @8 j
- #define DATA 800$ O- @; n\" J% o$ n5 ]! f# y
- #define IN 25 Z' t3 [) `/ B
- #define OUT 1
- 7 W% ?& n* d5 q* X#define NEURON 453 |' q9 [+ i) s: Q6 r& Z
- #define TRAINC 20000
- 5 g) |+ F0 _* n/ ^ 2 \' ~/ j\" @& i! T! z
- double Fx(double x)) j6 J+ m. W' ~. g4 S
- {
- . E- V+ A: I& M+ D4 F, ]! h! G return 1 / (1 + exp(-1 * x));
- J+ N$ H6 V8 N% I5 G1 P+ E}+ v: c7 S e; M- y7 c, l7 m# g7 y
- //La输入层 Lb隐藏层 Lc输出层4 [- v j- I\" O# e' d9 l5 A& h( ?
- //样本输入
- * N4 \0 T' v$ J! y* A9 Q0 G& bdouble La[DATA][IN];
- 9 _9 S8 j+ ?5 I//样本输出
- ' v; C0 o6 N) q) w' Zdouble Lc[DATA][OUT]; t% M% [$ C- K
- //La->Lb权重9 y9 e2 g$ W9 i* C\" b7 ?
- double Wab[NEURON][IN];* N3 A% _0 h! |8 a$ W% _9 F
- //Lb->Lc权重
- 7 P1 R- p4 V( Udouble Wbc[OUT][NEURON];
- / C9 m L) J8 |+ {# b//样本输入每个向量的最小值,最大值;输出...
- % V- o! K3 ^# xdouble MaxIn[IN], MaxOut[OUT], MinIn[IN], MinOut[OUT];
- * V/ Y: t4 c2 l: u* @0 u
- / i+ X( m6 a; U\" o2 j( h//Lb层输出
- % \# I C/ K$ v$ t3 m, Ddouble LbOut[NEURON];
- 9 c5 o i# N! r' z//Lc层输出 o* z8 w9 R7 d9 d- n
- double LcOut[OUT];
- / M; T: t' u3 Z: \+ T
- 0 {8 v; a9 W& H8 I//Lc层单元的一般化误差
- : W7 v `& o* O- Ddouble Dc[OUT];
- # u1 \\" H% q* K- b! g, U5 a+ L\" m//Lb层单元的一般化误差/ L% K5 ^* ]8 A& N' L d; V
- double Db[NEURON];/ J/ H) Q. M Y6 {7 `8 h/ K5 d
- 3 v+ z A) d\" f# p! W# Z
- //设置样本数据* g% C9 F) }) V% H' V* n
- void setSample()
- 9 P' X! z\" [9 M9 c) e, E/ I{8 C8 l2 K: s$ l; v i$ {
- srand((unsigned)time(NULL));
- ! w7 ?: \\" t& U) `& I9 L int i, j;
- 2 ~0 R$ t\" q) Q0 j+ z+ [\" r: b for (i = 0; i < DATA; i++)
- # ~8 r& T, B2 { {/ V5 Z. S9 V9 g6 O
- for (j = 0; j < IN; j++)7 U. M E* d% O* W4 |5 C; ^
- {/ Q4 K7 K0 {4 v1 P: R
- La[j] = rand() % 1000 / 10.0;
- 2 g9 Z' j1 J3 ~$ _* ?4 R$ g/ Q }
- 6 C+ W4 w% `, h. q! ~8 k+ \\" @; s! E
- # d/ } Q& s7 n5 C7 g+ T& ~$ n for (j = 0; j < OUT; j++)
- ( H6 z' F5 I\" D# c Lc[j] = La[0] + La[1];7 d+ y\" w0 X2 q+ o
- }
- / Z. g H1 @2 Q, Y* O}; j5 u+ F- |5 R4 i( Q% @' r0 O
- //初始化BP网络:权重,阈值(隐含节点+输出节点)9 n; {4 ] |+ G2 P; b% K
- void initNet()
- \" n5 ^5 f3 }4 ?; F\" L1 g' H{- l- m5 w: a) W. N1 G, C
- srand((unsigned)time(NULL));1 ^( @( U% |6 ~: c# I& x
- //两部分的权值设置随机值【-1,1】) q# S5 ]* j6 u# w: F7 S/ D
- int i, j;7 W4 L0 R6 R% W0 b$ N
- for (i = 0; i < NEURON; i++)
- & |6 O E9 Z3 T6 T, z; S for (j = 0; j < IN; j++)3 _$ X% t! n4 W) D
- {$ `7 y9 X6 U4 A4 K, E\" i) Z' ^' T
- Wab[j] = rand()*2.0 / RAND_MAX - 1 ;( Q( o! q7 D9 ?; S( s' ?
- Wab[j] /= 20;: D4 C: \! w/ u3 D
- }/ X8 l, u9 t* c+ M; T
- \" B% E\" R8 e! L1 [4 Y6 f4 t
- for (i = 0; i < OUT; i++)
- + E0 c1 j4 W) V( W for (j = 0; j < NEURON; j++). x' O' U; {6 t. y. r9 o
- {/ _+ K# ^* @0 }
- Wbc[j] = rand()*2.0 / RAND_MAX - 1;
- * g# x+ Y\" P9 e* ] Wbc[j] /= 20;& {% u& r( j ?, M( G# T( B/ Y# M
- }
- ) ?+ J j0 F/ U- I ' |% y9 }\" M# J$ Y0 o: N
- //找出每个向量最小最大值,并进行归一化
- 2 z0 U\" i\" B# M; \& G1 d for (i = 0; i < IN; i++)* S; L M0 R- j
- {7 B. I; i! y' X$ z8 q( U8 g
-
- 4 Q\" b4 d8 ^% h2 K% o4 F MinIn = MaxIn = La[0];
- 0 G$ _6 X$ e3 m( ]) I for (j = 0; j < DATA; j++)
- - Y% x2 m' K4 p! D5 j' K {
- 8 u& p! N& w! F5 D/ y [ if (MinIn > La[j])# H$ }+ y$ c0 h$ \
- MinIn = La[j];
- / U, v* l6 |% a) J7 u, W1 n if (MaxIn < La[j])/ r- ]2 [\" m( o( |
- MaxIn = La[j];3 ^& M* n. O z0 w% R2 W
- }' n) ~* d2 u6 V2 G/ ?' C$ c
- # ]& S, f$ @& Z# f7 h
-
- , N, X- u' s, y5 H' n }+ H4 i8 n4 q2 ?& z$ U
- ) H( o; ~% l' h8 n+ W4 z
- for (i = 0; i < OUT; i++)2 \' p& J- n\" b1 g8 G' q+ H0 @9 E( L5 ^
- {
- 8 `+ e2 G/ H q/ D\" j0 C5 n, F
- / ]1 H\" _\" ?6 n- c3 Y6 q+ X2 t MinOut = MaxOut = Lc[0];\" f\" g- ~. J# k- C
- for (j = 0; j < DATA; j++)8 G$ D' B. Q* D
- { E! v1 T s G: e5 Z5 P
- if (MinOut > Lc[j])
- / F& o( s& ^\" ?' s. q3 m4 c MinOut = Lc[j];
- ; K! I! ], v) D- N4 } if (MaxOut < Lc[j])5 H\" Z5 u\" Q& q# ~
- MaxOut = Lc[j];# O% D0 @ c\" R4 K2 |
- }9 ]5 U7 G& s3 R3 L$ N
- 5 [( `7 u% r' E6 V/ ]
- }
- + o/ h8 l\" V& |6 c5 ?( \
- 6 Q! y/ W }9 p4 l7 P) j //归一化. w9 {5 F; ?1 W9 q5 G0 `
- for (i = 0; i < IN; i++)
- . u2 S6 V* v/ }: G' H for (j = 0; j < DATA; j++)
- 2 R8 O# B- o, }5 b+ y0 B La[j] = (La[j] - MinIn + 1) / (MaxIn - MinIn + 1);
- * J* A5 U' `( ]9 _6 Z$ D0 Y 5 ^9 S9 k+ E6 `0 [, O
- l3 ~ ]2 ?7 P$ f
- for (i = 0; i < OUT; i++)
- 5 ^7 N! s* m% N4 G) `' o3 e# j4 v; a for (j = 0; j < DATA; j++)
- % E5 U' B1 [' O4 ^; d. K Lc[j] = (Lc[j] - MinOut + 1) / (MaxOut - MinOut + 1);% G6 c: v n# v# ?* y, f
- # A6 ^: }- A1 i; x
-
- & u! f9 d$ M+ P, _' S6 ^
- , c: r0 S; k. n) A}
- a$ B2 P7 K5 P4 G4 k9 a! {) `4 L' t$ o' Bvoid getActiveVal(int dataIndex)
- u4 a8 X/ L |3 k, W! \{5 _+ Y& r. u9 U7 g
- int i, j;9 d5 G1 W, J6 S4 ], D
- double sum;; a& _6 h. n. t6 r. b8 {( J
- for (i = 0; i < NEURON; i++)( I$ |+ K7 J( Y' r. G
- {) R3 l# _9 u! A- S2 f\" V1 W# Z
- sum = 0;+ R: Y f5 q# S
- for (j = 0; j < IN; j++); Y7 \* g3 s1 I8 L4 l6 Z
- sum += Wab[j] * La[dataIndex][j];
- 2 M5 r1 M+ w+ v% w+ e% I' y# ^# U% F - Q9 H2 m; s\" b1 Z+ x! r
- LbOut = Fx(sum);
- \" ?1 a* |8 f* u2 L+ _
- 3 ?3 |' W: |0 o$ g }\" y% n' c8 {0 V& m\" T
-
- ! P0 {+ x+ [& u( p& r for (i = 0; i < OUT; i++)8 }# `) o$ X& G& F& q, [
- {, {( c/ q& @3 b1 ~. |8 n S0 w
- sum = 0;2 k8 N& ~1 P; j8 Q
- for (j = 0; j < NEURON; j++) m5 e% o\" h7 D+ R1 Z
- sum += Wbc[j] * LbOut[j];/ g' J\" P! a/ p- z6 Q
- : L% y' |: o j0 a' e5 ]
- LcOut = Fx(sum);
- 9 C* v6 d\" D6 i0 W2 M' N, ^, t: D$ C+ s9 | }4 d5 N* P6 A0 |$ Q; \0 p% |+ d4 c/ C
- }
- : r6 X$ W. L. e3 V: J/ K* B( Zvoid backUp(int dataIndex)
- + d9 \3 y5 l8 R{# W W* {+ w' Z E9 } J
- int i, j;; @0 ?: X4 |2 a. L7 R$ _9 P. z
- double sum = 0;$ Y. t4 R4 W( [/ ?: g- z8 }
- //Lc层单元的一般化误差
- 6 l% N/ g4 o) {, e3 M9 n' @$ u0 g2 ^ for (i = 0; i < OUT; i++)1 ?\" v\" L. m. d; ^
- Dc = LcOut * (1 - LcOut)*(Lc[dataIndex] - LcOut);
- , o6 k+ M- a M) w/ \; P; R
- % X. D1 ?' G+ G! o //Lb层单元的一般化误差
- , d. S! {+ U; g: k8 f for (i = 0; i < NEURON; i++)
- , M! p: W/ v/ p; b* v {
- % r7 g* j( o! k\" G' ]. U. \ V sum = 0;
- 5 m6 C! f/ T5 Y# F- p for (j = 0; j < OUT; j++)' G\" t+ c A\" ]4 V% ]
- {5 ?- d9 ~. ?7 I* J, |8 D
- sum += Wbc[j] * Dc[j];3 Z\" p. q0 C& ^) o$ l$ A
- }; d6 y1 A' s0 D) e* f8 N* y4 F
- Db = LbOut * (1 - LbOut) * sum;
- 7 }) e- v0 u8 s }
- 5 y8 Q3 S. g7 E j9 u
- 0 P* E0 }\" K4 A# c! F' m8 A3 n! o double beta1 = 0.08, beta2 = 0.1;) \, n1 j4 E$ V# y
-
- ' Y+ W5 x* T5 ^9 R- y) H\" H( U; f1 V for (i = 0; i < OUT; i++)7 N; D0 K* P4 S' z' ?
- for (j = 0; j < NEURON; j++)
- , d: S+ n) q* l9 d# g$ O Wbc[j] += beta1*LbOut[j] * Dc;$ A p c- U4 j. @/ P
- ) h. s& l( d* |2 x8 C% c
- for (i = 0; i < NEURON; i++)
- 2 c8 X1 u' _ l$ i for (j = 0; j < IN; j++)
- * ?8 g5 M, v+ B0 X6 _3 N+ g. i$ s8 D# A Wab[j] += beta2*Db * La[dataIndex][j];
- , y2 I. Z# W8 { : z1 S4 {: |5 g\" O# @; X
-
- 1 \& @. ]\" A% j$ z A* h8 Z
- + `# K; {, \* Q0 U4 K B& k\" Q}; C6 S# @0 U7 L1 n' \ l9 V, ~% v
-
- 1 y1 P4 ^# ~\" @5 ?4 }' mdouble result(double d1, double d2)
- : @8 e$ K$ d; ~( U# {{
- ! u G3 e3 d* `9 H; D0 l int i, j;
- % y' T! Q4 w9 O7 r4 S4 X double sum;
- 6 P( K: I. X6 L: a- S% {! d; u d1 = (d1 - MinIn[0] + 1) / (MaxIn[0] - MinIn[0] + 1);;
- $ o6 e {+ y# z' b d2 = (d2 - MinIn[1] + 1) / (MaxIn[1] - MinIn[1] + 1);, u! @$ [. y3 p7 c! \
-
- 0 g! A( m Y' r) ~/ u for (i = 0; i < NEURON; i++): ~; d9 |9 ], [\" a
- {% s6 a2 S$ H% L* ~2 f
- sum = 0;
- ! E/ ^' m1 ?% y9 J1 W, o$ w sum = Wab[0] * d1 + Wab[1] * d2 ;0 y- R7 c+ [3 D [# D7 x
- LbOut= Fx(sum);$ k! _% C! v: Y- j/ Z. g- ~0 t
- }! ?: n9 Y$ M- S! }! Z6 f8 A
- & D; [' q6 z, g8 x' X
- sum = 0;
- % w) D0 E/ D; e for (j = 0; j < NEURON; j++); Z( ~0 c! X$ l) x+ W
- sum += Wbc[0][j] * LbOut[j];
- 9 ^3 ?, F. V4 p2 b# i \" m( r5 u8 u' u' S# a
- LcOut[0] = Fx(sum);7 ]. K! K* H5 L& W
- * w% A3 b8 T' D( U1 j
- return LcOut[0] * (MaxOut[0] - MinOut[0] + 1) + MinOut[0] + 1;* [6 r# u' K5 {, Q7 U& J& B\" _3 n
-
- 7 o+ j, E! m3 @# `
- 9 k0 q v, p$ |+ X% J0 e4 x' y}
- 9 R+ L6 F, l* Bvoid train()/ W* H; p3 g d5 w9 m$ \\" X' T
- {/ H! [7 z( k) ^* z* w. r2 p
- int i, j, no = 0;* v+ S8 h; m' q/ N, C9 O
- double e = 0;
- 9 [5 H0 l1 V9 G5 @& @2 Z, ^ do{; g' _' }, P1 D/ c% [
- e = 0;
- 4 W2 w+ R! @& | for (i = 0; i < DATA; i++)3 c7 q; t0 f$ B! C3 E
- {
- 3 m\" o8 P7 N- N: J# C& B3 c Q3 s0 A getActiveVal(i); 7 N5 U/ c7 h/ y% c: A+ u, k
- backUp(i);
- * f0 Y& z8 q' ^. J1 b4 ?( V e += 0.5*pow((LcOut[0] - Lc[0]), 2);- A* b. I# d0 @- [+ y: z1 D
- }' |. W m& \2 [/ z5 N
-
- ! L8 I, x v! L+ M k8 p+ P cout << no << " " << e << endl;
- # T; l/ f: \7 L no++;/ D- @+ C7 a6 P p
- } while (no < 1000);
- 3 l/ }: ~1 ~. @$ q& ~- m
- ; X( ?- @' v, e0 k' m 9 _ H& p6 x U1 W7 A
- }
- 3 D( F; s3 l! ~! p 4 b. ~9 E k8 U/ u b, o
- void main(int argc, char const *argv[]), C# s4 K; c/ U6 w) ^: W
- {
- # u1 ?8 t' I+ i1 N6 I- [
- 4 j1 p9 E/ h8 \- T# z9 E5 [8 C; _ setSample();9 T9 Y; l\" Q3 c1 j3 M) n
- initNet();# Q8 h2 n, z; L\" S& A( P; F
- train();2 d8 B$ z4 j; W. p. [
- double a, b;$ V3 Y2 B5 I: o/ l. G! J) f
- while (1) l5 I' k% n/ M; V+ h
- {
- ; J- F ]\" S3 V7 @ cout << "print two numbers" << endl;' I3 H% W' S' n+ D# U/ P) o
- cin >> a >> b;\" |8 i# C4 o$ T9 S4 h' q
- cout << "result:" << result(a, b) << endl;5 f% T6 X2 b7 g. D
- }
- ( ]% L% F0 r9 r+ e( G! H h6 |
- l- W4 R1 m4 H/ h3 H ; V& i\" b6 {# J5 n' X$ Y/ q
- }
+ q- ?3 J# H2 I1 ^$ O
5 O" a( V% L8 {
|
zan
-
总评分: 体力 + 1
查看全部评分
|