Mon, 6 May 2013[1] arXiv:1305.0764 [pdf, ps, other]Calculation of Exact Estimators by Integration Over the Surface of an n-Dimensional Sphere1 h- T! {" Y% z Anthony J Webster- h0 f% [, o+ ~; P+ d* M9 t
Subjects: Statistics Theory (math.ST) : _- J" Y5 t. C( E$ l0 M) @# `* t; F4 ^9 q; F
[2] arXiv:1305.0630 [pdf, ps, other]Anisotropic oracle inequalities in noisy quantization # k- f; _1 G' I6 a3 u% Q8 L- QSébastien Loustau2 M4 I# Q0 l' t+ i5 s
Comments: 30 pages. arXiv admin note: text overlap with arXiv:1205.14171 k9 u: S8 `+ g7 y; Y8 R" O9 E
Subjects: Statistics Theory (math.ST); Machine Learning (stat.ML)$ \- [8 V5 Z* w! h8 u9 N; ^
0 L# O" c" G7 a6 [& m3 @8 j: S[3] arXiv:1305.0617 [pdf, ps, other]Bayesian Manifold Regression . @( n$ m3 ~0 u4 d& gYun Yang, David B. Dunson8 M" v: b4 g% T T
Comments: 36 pages, 2 figures. @/ R, r1 M5 L" E1 n$ w+ _1 j
Subjects: Statistics Theory (math.ST)/ E$ D0 A, t: g+ x5 w* A
5 v, A4 }" c4 T O* j) N- @0 N' lFri, 3 May 2013[4] arXiv:1305.0355 [pdf, other]Model Selection for High-Dimensional Regression under the Generalized Irrepresentability Condition& o1 t$ j) X/ c! s! ^8 T- H6 x7 L Adel Javanmard, Andrea Montanari % } x9 u: V0 A' t9 xComments: 32 pages, 3 figures 8 M' K/ R) T2 a5 o2 pSubjects: Statistics Theory (math.ST); Information Theory (cs.IT); Learning (cs.LG); Methodology (stat.ME); Machine Learning (stat.ML)" L( U& G6 d! D; s) `) {. o9 W
: v I& C0 L3 C! J8 f[5] arXiv:1305.0339 [pdf, ps, other]A Note on Central Limit Theorems for Linear Spectral Statistics of Large Dimensional F-matrix1 L+ u' r; |! [. i0 R0 W2 f Shurong Zheng, Zhidong Bai9 b" [7 d& p% O
Subjects: Statistics Theory (math.ST) * n0 _; j F1 R2 v* P& a ( I: c0 H8 u- P' {1 z[6] arXiv:1305.0274 [pdf, ps, other]Multichannel Deconvolution with Long-Range Dependence: A Minimax Study 2 n% S- }, D5 D, ARida Benhaddou, Rafal Kulik, Marianna Pensky, Theofanis Sapatinas+ U& D5 |3 ~2 _! M) ^
Subjects: Statistics Theory (math.ST)0 d9 ]" P6 m7 O* Y, T
7 A5 e$ B2 @1 p- C8 ~[7] arXiv:1305.0539 (cross-list from math.AG) [pdf, other]Tensors of Nonnegative Rank Two L/ \( f9 Z& Y8 a7 b. i0 v Elizabeth S. Allman, John A. Rhodes, Bernd Sturmfels, Piotr Zwiernik / Z& Q# I: l2 G- d9 t }) uComments: 22 pages, 1 figure 4 B* f% k! C- Q ]Subjects: Algebraic Geometry (math.AG); Statistics Theory (math.ST) " x/ e9 }3 t# W1 h6 m7 L* y, M/ C7 G! i Q% z' r$ ? Thu, 2 May 2013[8] arXiv:1305.0179 (cross-list from math.PR) [pdf, other]Species dynamics in the two-parameter Poisson-Dirichlet diffusion model 1 W1 c6 k6 n9 X; j2 xMatteo Ruggiero % D1 x; @3 L# aSubjects: Probability (math.PR); Statistics Theory (math.ST)+ ]8 ?- `% a6 D+ D+ p i# \4 t
2 R6 }+ r H$ h% K1 e/ i1 ~ Wed, 1 May 2013[9] arXiv:1304.7914 [pdf, ps, other]A Characterization of Saturated Designs for Factorial Experiments ) h# d- h4 a6 ?) k0 V* s) zRoberto Fontana, Fabio Rapallo, Maria-Piera Rogantin $ |" s1 d7 m h7 jComments: 18 pages, 1 figure 2 }9 R2 [8 Q% ~3 m! v W( MSubjects: Statistics Theory (math.ST); Methodology (stat.ME)4 P* R, P9 m+ U
4 s) o# B9 q( A% [3 ][10] arXiv:1304.8087 (cross-list from cs.DS) [pdf, other]Uniqueness of Tensor Decompositions with Applications to Polynomial Identifiability & p3 F; ]1 N/ K6 \$ B1 @8 sAditya Bhaskara, Moses Charikar, Aravindan Vijayaraghavan , g5 o/ y; I4 ^9 ]. eComments: 51 pages, 2 figures( M9 ^2 u. p3 R8 C0 a I! w8 l; e
Subjects: Data Structures and Algorithms (cs.DS); Learning (cs.LG); Statistics Theory (math.ST)! D$ [4 `& S4 n7 \ k2 H
+ q, P# E% j, r) f+ K$ |) _- a[11] arXiv:1304.8036 (cross-list from math.PR) [pdf, ps, other]n-digit Benford distributed random variables( H# f& F+ J1 Q) S+ _ Azar Khosravani, Constantin Rasinariu4 |7 \. M+ C. r& |$ G
Comments: 7 pages, 4 figures / g2 S! A' ?; w+ k4 dSubjects: Probability (math.PR); Statistics Theory (math.ST)& _6 `6 T( W3 M A" l4 C3 s5 V4 m" Q
9 I- }1 [1 B" @$ p0 [! y Tue, 30 Apr 2013[12] arXiv:1304.7678 [pdf, ps, other]Large and moderate deviation principles for averaged stochastic approximation method for the estimation of a regression function ( m6 w- Z+ G1 M. }% d) e0 D5 kYousri Slaoui " ^7 A7 t' ]$ {4 L/ }: tComments: arXiv admin note: text overlap with arXiv:math/0601429 by other authors: \4 L, ]' D! ^; T- j, k
Subjects: Statistics Theory (math.ST) 1 Y. @! z1 d7 D( @" \ ! U X# K: H& X[13] arXiv:1304.7668 [pdf, ps, other]Adaptive estimation under single-index constraint in a regression model$ N! G3 k3 y" X Oleg Lepski, Nora Serdyukova5 s" ~( Y& ?5 Q9 N+ Y, k) N5 k
Comments: 44 pages. Lemma 1 is common to "Adaptive estimation in the single-index model via oracle approach" (ArXiv:1111.3563) as well as Theorem 5 coincides with Theorem 4 in that paper. arXiv admin note: substantial text overlap with arXiv:1111.35631 C! Q/ z j! d& B
Subjects: Statistics Theory (math.ST); Probability (math.PR)& K- Q. k: M3 Q% A8 _
) r" `8 U G0 m. Q[14] arXiv:1304.7366 [pdf, ps, other]Asymptotically minimax empirical Bayes estimation of a sparse normal mean5 r& x# y8 F( X: @* j5 T& j Ryan Martin, Stephen G. Walker $ d2 g$ w+ s# a1 i1 tComments: 14 pages, 2 figures, 2 tables * o9 P. O* _& p3 w% FSubjects: Statistics Theory (math.ST)' L/ V" p$ W0 w P j
* v+ Q- y) u' a( I( ]7 n# U
[15] arXiv:1304.7353 [pdf, ps, other]A note on non-parametric Bayesian estimation for Poisson point processes 3 x' U# Q& X' K1 s5 IShota Gugushvili, Peter Spreij 7 I: t$ _# Q' p @1 gComments: 10 pages / h, B3 V' `% y/ \& [Subjects: Statistics Theory (math.ST)9 J% o3 n! l8 Z4 H& J1 k6 O * L- w- ~9 ~) S6 U: Y$ t: |* [ " k( |) G$ o0 t; j& Z2 C) m( n. ~% P; v$ k) q& x( s3 j