控制系统的数学模型www.madio.h控制系统的数学模型1 SISO线性定常连续系统微分方程的一般形式: a0dndtnxc(t)+a1dn−1dtn−1xc(t)+...+an−1ddtxc(t)+anxc(t)a0dndtnxc(t)+a1dn−1dtn−1xc(t)+...+an−1ddtxc(t)+anxc(t) =b0dndtnxr(t)+b1dn−1dtn−1xr(t)+...+bn−1ddtxr(t)+bnxr(t)=b0dndtnxr(t)+b1dn−1dtn−1xr(t)+...+bn−1ddtxr(t)+bnxr(t) % H. Q% A4 X- ?8 D# s% z: W" @
其中xc(t)xc(t)是被控量(输出量), xr(t)xr(t)是控制量(输入量). 为了表示系统的可实现性,一般限定m<nm<n(输出量最高阶导数 小于 输入量最高阶导数). [注意]
3 |6 C+ R+ m) }8 @a0,a1...ana0,a1...an是输出量导数的系数, b0,b1...bnb0,b1...bn是输入量导数的系数,如果a0,a1...ana0,a1...an,b0,b1...bnb0,b1...bn是常数,,则这个系统为定常系统; 否则成为时变系统. 2 控制系统的数学建模过程1. 确定系统(元件)的输入量、输出量. 2. 按照系统中元件遵循的科学规律(物理, 化学等),围绕输入量和输出量以及中间变量, 列写方程式. 3. 消去中间变量, 得到只有输出量和输入量及其各阶导数的微分方程. 2.1 例子1: RC电路file:///C:/Users/ADMINI~1/AppData/Local/Temp/msohtmlclip1/01/clip_image002.gif
0 i$ J3 I5 Q$ G$ _解: 8 w) l6 `8 g& m/ Q$ _/ X$ K' s) v2 s; ?
1. 确定输入输出: 选择u1u1为输入,u2u2为输出.
* S% g, g# O. M' h1 |2. 根据电路理论列写方程: ⎧⎩⎨⎪⎪u1(t)=Ri(t)+u2(t)i(t)=Cdu2(t)dt{u1(t)=Ri(t)+u2(t)i(t)=Cdu2(t)dt
4 }$ C5 e O7 q e, O3. 消去中间变量i(t)i(t), 可得系统微分方程:
u1(t)=RCdu2(t)dt+u2(t)u1(t)=RCdu2(t)dt+u2(t) [注意]
; A5 r. R1 ]. U/ S$ w4 E这是一阶系统, 滤波电路. 2.2 例子2: RC电路file:///C:/Users/ADMINI~1/AppData/Local/Temp/msohtmlclip1/01/clip_image004.gif
4 c# k9 \* I6 P9 I解: 6 U" b3 [7 {' H
1. 选择u1u1为输入量, ii为输出量.
% W, a5 o0 L5 ~' T* }% k$ P+ _1 S2. 根据电路理论列写微分方程: ⎧⎩⎨⎪⎪u1(t)=Ri(t)+u2(t)u2(t)=1C∫i(t)dt{u1(t)=Ri(t)+u2(t)u2(t)=1C∫i(t)dt
0 W3 C( Z7 q% F: h3. 消去中间变量u2(t)u2(t), 可得系统微分方程:
RCdi(t)dt+i(t)=Cdu1(t)dtRCdi(t)dt+i(t)=Cdu1(t)dt [注意] 7 B5 u5 M( k$ p; d! e
对比例2.1和2.2; 同一个系统选择不同的输入输出量, 得到的数学模型可能不一样. 2.3 例子3: RL电路file:///C:/Users/ADMINI~1/AppData/Local/Temp/msohtmlclip1/01/clip_image006.gif
1 F$ _5 D$ R2 F9 |2 |9 s' U. v5 n5 E1. 选取uu为输入量, ii为输出量.
- M5 _3 A9 m& |2. 得系统的微分方程为: Ldi(t)dt+Ri(t)=u(t)Ldi(t)dt+Ri(t)=u(t) [注意]
9 S) L9 A6 T- H5 x7 c A( p例子2.3和例子2.2比较, 不同的系统, 可能得到相同的数学模型. K+ v H9 S6 ?7 b, [
. C {; K& ]1 ]; T
|