- 在线时间
- 2 小时
- 最后登录
- 2020-3-30
- 注册时间
- 2020-3-24
- 听众数
- 1
- 收听数
- 0
- 能力
- 0 分
- 体力
- 5 点
- 威望
- 0 点
- 阅读权限
- 10
- 积分
- 2
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 1
- 主题
- 1
- 精华
- 0
- 分享
- 0
- 好友
- 0
升级   40% 该用户从未签到
 |
Clear[Am, As, Aa, \[Alpha], \[Rho], \[Theta]m, \[Theta]s, \4 M7 L: l' U) b+ {7 {2 V- U
\[CurlyPhi]m, \[CurlyPhi]s, \[Epsilon]]' N& p" T! ^5 V' t) z7 t& [' Y
\[Gamma]a = 0.1; \[Gamma]m = 0.15; \[Gamma]s =
& H% O2 X# P3 @3 U 1 - \[Gamma]a - \[Gamma]m;
# W1 C+ s* Z9 r+ T\[Epsilon] = 0.04; \[Alpha] = 0.3; \[Rho] = 0.04; S' G0 V; m. i0 Z$ L0 ^2 w; x
\[Theta]m = 0.75; \[Theta]s = 0.9;1 u: j/ ^2 S1 f, n
gRate = 0.02;0 X' g2 ?8 a1 J& E# u# i- R0 \% k
Am = (gRate + \[Rho])/\[Alpha]; Ba = 4; Bm = 1; Bs = 2.5;
- O# C ^! r" j Jps = Bm/Bs; pa = Bm/Ba;# B+ f+ I; h, z# N q- b
\[Delta] = 0.03;" V: X2 ]/ ~+ |/ ], l
B = \!\(TraditionalForm\`\*# [1 x( {: o0 M1 x* Z0 ?. I4 L4 @
FractionBox[
7 r6 o* S3 X$ h2 b, [7 A6 CRowBox[{
; V. K& p* e5 l' j* I$ e& h0 JRowBox[{
0 S, m# Q9 Q8 i7 PRowBox[{ E0 p% Q5 V. Y4 Q) e2 j% s
StyleBox["(",
7 _8 Y% O, ^0 d# A' D' d# \SpanMinSize->1.,
3 E m: f. S& ISpanMaxSize->1.],
- x) \$ @ S) \% Y! ?% t# Z3 @" }RowBox[{"1", "\[Minus]", "\[Alpha]"}], % m+ i6 V. o' A! J
StyleBox[")",
5 f' x: e( N7 V, l0 F7 ], S& ^SpanMinSize->1.,
; {! m' q. S+ d4 S' Z$ aSpanMaxSize->1.]}], "gRate"}], "+", "\[Rho]"}],
, C1 D+ ?" k& E0 M- \& n# s "\[Alpha]"] \[Minus] \[Delta]\);" v0 u. `9 f Q1 L( g3 ^$ ?
cap = 10;& ^2 E9 e8 u% j1 h) u
csp = (pa*cap)/ps;0 K i' J. m" Q" v) X
D = ((1 \[Minus] \[Alpha])*0 Y+ X! K! Y8 B" ^8 [0 e% ^4 X
gRate + \[Rho] - \[Alpha]*\[Delta])/(\[Rho] + gRate);* c2 O* j8 O7 Y" S8 h( `8 U( |
\[CurlyPhi]m = 0.1; \[CurlyPhi]s = 0.1;
6 y( e& Q, ], Y8 }+ i9 n* B& IPrint["*** Initial Values ***"]
- G# T& D( W6 Z, r3 x0 vE0 = 1.5;
$ w) z9 p; ^/ k* M( e; D. c: PK0 = E0/B;2 _/ v: Y: [! k& i+ z, `6 b5 n2 S
hm0 = 0.25; hs0 = 0.25;(* initial values *)
/ z& ?# X2 l2 Z* q6 Q\[Eta]m0 = hm0/K0; \[Eta]s0 = hs0/K0;
1 H8 N( ^. ?4 Fxm0 = (B*\[Gamma]m^\[Epsilon]*
# P: p* C* }) H: M& v hm0^(\[Theta]m*(1 - \[Epsilon])))/(\[Gamma]a^\[Epsilon]*pa^(3 R2 l6 e" E: o1 e% }9 v
1 - \[Epsilon]) + \[Gamma]m^\[Epsilon]*
) T9 n. [$ b A! D0 r9 C; @+ w+ ? hm0^(\[Theta]m*(1 - \[Epsilon])) + \[Gamma]s^\[Epsilon]*(ps** f+ p+ U1 ]8 I' y Z$ g
hs0^\[Theta]s)^(1 - \[Epsilon]));
5 w K( W$ Y3 Wxs0 = (B*\[Gamma]s^\[Epsilon]*(ps*; z! N" {) q- l, j) f+ e
hs0^\[Theta]s)^(1 - \[Epsilon]))/(\[Gamma]a^\[Epsilon]*pa^(. O7 z6 L7 o1 ^0 X* J2 N" y( _4 s
1 - \[Epsilon]) + \[Gamma]m^\[Epsilon]*
! J6 u9 M, X+ r hm0^(\[Theta]m*(1 - \[Epsilon])) + \[Gamma]s^\[Epsilon]*(ps*
8 K! E# U3 A5 r. V* g hs0^\[Theta]s)^(1 - \[Epsilon]));& M8 f% z1 n2 i$ W+ {' W& G0 A! q2 q- ]
Print["\[Eta]_{m,0}=" <> ToString[\[Eta]m0], + b. v0 t6 \' t! @* K7 u
", \[Eta]_{s,0}=" <> ToString[\[Eta]s0], * b* `: V! P* z- S- e# n
", x_{m,0}=" <> ToString[xm0], ", x_{s,0}=" <> ToString[xs0]]
7 a3 q1 R' M" a+ J7 x- HTT = 100;(* end time *)
- m7 [( J3 D0 Z9 Y. q, l; \, [(* Solve differential equations *)" y8 e0 i, B: k! M9 D) |$ V
Sol = NDSolve[{xs'[t] = (1 - \[Epsilon])*) k* O' i( j& M& ]8 E
xs[t]*( (1 - xs[t]/, b9 h2 w: ~+ y+ ^- G' [/ Y
B)*(\[Theta]s*\[CurlyPhi]s*(xs[t]/(ps*\[Eta]s[t]) - 1) -
& M4 Q2 x. [/ h7 R7 C xm[t]/B \[Theta]m*\[CurlyPhi]m*(xm[t]/\[Eta]m[t] - 1))), L2 n$ m# N! r* N) v0 X: G
xm'[t] == (1 - \[Epsilon])*! O. Y6 d1 ^/ r$ G% `4 }9 F" _+ y
xm[t]*( (1 - xm[t]/. X; e! Y' |: ?/ p) b7 g- K8 r5 D* b
B)*\[Theta]m*\[CurlyPhi]m*(xm[t]/\[Eta]m[t] - 1) - % M! T0 i7 ?! U! i- \, N1 o7 I) f
xs[t]/B*\[Theta]s*\[CurlyPhi]s*(xs[t]/(ps*\[Eta]s[t]) - . x5 `; p' S; H# I
1) ), \[Eta]m'[
( p, N0 H$ U, b# H% l5 x$ W t] == \[CurlyPhi]m*
' h; ?* |6 z) V! `, h8 [! l xm[t] - (\[CurlyPhi]m + gRate)*\[Eta]m[t], \[Eta]s'[
9 Z0 N- i# H) h* n+ y. Q+ v t] == \[CurlyPhi]s*xs[t]/ps - (\[CurlyPhi]s + gRate)*\[Eta]s[t], # @' X/ V+ j% {' w g5 s
K'[t] == gRate*K[t], hm[t] == \[Eta]m[t]*K[t],
( b/ @9 ?, x# _3 b hs[t] == \[Eta]s[t]*K[t], 2 G! r- X; J* B
Sa[t] == (\[Gamma]a^\[Epsilon]*(pa)^(1 - \[Epsilon]))/(\[Gamma]a^\
9 _, m7 D4 H; ?5 g, i5 S; l7 x\[Epsilon]*pa^(1 - \[Epsilon]) + \[Gamma]m^\[Epsilon]*
- {# |+ D4 I' ]1 O+ [ hm[t]^(\[Theta]m*(1 - \[Epsilon])) + \[Gamma]s^\[Epsilon]*(ps*
9 [1 O# H+ ?& t hs[t]^\[Theta]s)^(1 - \[Epsilon])) + (\[Gamma]m^\[Epsilon]*, o+ {# a. G1 ?" ]7 i7 q9 O
hm[t]^(\[Theta]m*(1 - \[Epsilon]))*pa*2 q% ?4 f1 i* s5 c. y7 l# p) J+ ?
cap)/((\[Gamma]a^\[Epsilon]*pa^(2 H6 a4 Z& I& {* M4 e
1 - \[Epsilon]) + \[Gamma]m^\[Epsilon]*
2 o7 l8 [) L! i/ m hm[t]^(\[Theta]m*(1 - \[Epsilon])) + \
9 x4 k" X0 C4 s\[Gamma]s^\[Epsilon]*(ps*hs[t]^\[Theta]s)^(1 - \[Epsilon]))*k (t)*
( ^( y) n% U5 D9 C xm (t)),
- \" E% |4 @2 V+ k Sm[t] == (\[Gamma]m^\[Epsilon]*$ N6 S4 e6 H( f, I; }2 F- \9 u6 ?, y9 u& u
hm[t]^(\[Theta]m*(1 - \[Epsilon])))/(\[Gamma]a^\[Epsilon]*pa^(
7 g" a" G' W r% {% l- ^. ?) @5 e 1 - \[Epsilon]) + \[Gamma]m^\[Epsilon]*
, S: |7 h7 \) s" X" v hm[t]^(\[Theta]m*(1 - \[Epsilon])) + \[Gamma]s^\[Epsilon]*(ps*% u `& _$ s) l1 J3 |( H
hs[t]^\[Theta]s)^(1 - \[Epsilon])),
. [- \, l/ [' K0 ^ Ss[t] == (\[Gamma]s^\[Epsilon]*(ps*
& J. v7 f0 b3 Z! R hs[t]^\[Theta]s)^(1 - \[Epsilon]))/(\[Gamma]a^\[Epsilon]*pa^(; ]. c# x! x t4 m
1 - \[Epsilon]) + \[Gamma]m^\[Epsilon]*
2 Y7 \. b* J# h I7 V, i hm[t]^(\[Theta]m*(1 - \[Epsilon])) + \[Gamma]s^\[Epsilon]*(ps*
4 v8 X% Z# Y$ ~# |& x hs[t]^\[Theta]s)^(1 - \[Epsilon])) - (\[Gamma]m^\[Epsilon]*, C3 w, @9 `6 y( I
hm[t]^(\[Theta]m*(1 - \[Epsilon]))*ps*
. W2 H e9 R/ {: a csp)/((\[Gamma]a^\[Epsilon]*pa^(( l3 B4 U. c0 E" L" J
1 - \[Epsilon]) + \[Gamma]m^\[Epsilon]*2 q1 V5 \7 P! I7 I
hm[t]^(\[Theta]m*(1 - \[Epsilon])) + \
, ~% d3 a# l& f' \+ _\[Gamma]s^\[Epsilon]*(ps*hs[t]^\[Theta]s)^(1 - \[Epsilon]))*k (t)*5 [1 E: A% w7 D# [& t
xm (t)), xm[0] == xm0, 7 b+ R: u' r( J
xs[0] == xs0, \[Eta]m[0] == \[Eta]m0, \[Eta]s[0] == \[Eta]s0,
- C+ Q8 A# Q& [7 \0 R" P' X9 P7 ` K[0] == K0}, {xm, xs, \[Eta]m, \[Eta]s, K, hm, hs, Sa, Sm, Ss}, {t,
* L7 P6 d6 |- ]- ]) [/ X) |! e 0, TT}]+ x, p' v- p. O7 h. Y
Plot[{Evaluate[Sa[t] /. Sol], Evaluate[Sm[t] /. Sol], # q7 c& \1 x8 @3 g9 e" @
Evaluate[Ss[t] /. Sol]}, {t, 0, TT}, AxesOrigin -> {0, 0}, # B+ ~3 e) l4 P4 _" a7 v. r$ C ]
PlotRange -> {0., 0.8}, PlotStyle -> {Blue, Dashed, Dashing[{0.05}]}]! u! T7 a! h3 h, O7 I+ q
Plot[{Evaluate[D*Sa[t] /. Sol], `2 K1 I# T* s
Evaluate[(D*Sm[t] + (\[Alpha]*(gRate + \[Delta]))/(\[Rho] + $ y5 f. d( x9 O& y5 f$ c
gRate)) /. Sol], Evaluate[D*Ss[t] /. Sol]}, {t, 0, TT}, ! o" r/ r6 e; s* Z1 b
AxesOrigin -> {0, 0}, PlotRange -> {0., 0.8}, 6 f; g8 ^ ~8 R, q$ `
PlotStyle -> {Blue, Dashed, Dashing[{0.05}]}]' g4 s. i) J- j: D# z
- M7 ?2 M! j* B' m# q# t6 \' f; n% T H8 ]
4 |$ s s3 x% k7 G, m$ b7 d8 @3 h6 n! r4 ~
Set::wrsym: Symbol D is Protected.: U5 ~4 w3 |) `4 j1 Z3 a$ u
' k t) K1 ? C! FNDSolve::deqn: Equation or list of equations expected instead of 0.96 (1-6.66667 xs[t]) xs[t] (-0.5 xm[t] (-1+xm[t]/\[Eta]m[t])+0.09 (-1+(2.5 xs[t])/\[Eta]s[t])) in the first argument {0.96 (1-6.66667 xs[t]) xs[t] (-0.5 xm[t] (-1+xm[t]/\[Eta]m[<<1>>])+0.09 (-1+(2.5 xs[t])/\[Eta]s[<<1>>])),<<13>>,K[0]==10.}.
- h4 E# L( H4 W" v- p
% V( M5 @9 E' F' q
! S( _" q. Q4 |+ e5 S6 |. O
' L9 W( }2 ~1 d6 {. k' q/ J
# G. p7 e' i2 m% o+ _$ @. Z9 t |
zan
|