导入库并读取数据 import numpy as npimport pandas as pdimport cartopy.crs as ccrsimport cartopy.feature as cfeatureimport matplotlib.pyplot as pltfrom matplotlib import colors, cmimport cmapsimport geocat.viz as gvfrom cartopy.io.shapereader import Readerdata=pd.read_csv('20190722.csv',dtype=np.float64,header=None,delimiter=',',encoding='gbk')lat=np.array(data[1])lon=np.array(data[2])rain=np.array(data[3])4 f& z, q) R- Z- h
设置colorbar刻度及区间色调 scales = [0.1, 10, 25, 50, 75, 100]cmap = cmaps.rainbowboundaries = [0, 0.1, 10, 25, 50, 75, 100, 150]norm = colors.BoundaryNorm(boundaries, cmap.N)mappable = cm.ScalarMappable(norm=norm, cmap=cmap)
) t! k3 z9 ^3 K' `( B7 Q h9 l: R1 a设置散点标记的颜色区间 marker_colors = mappable.to_rgba(boundaries)sizes = np.geomspace(10, 250, len(boundaries))plt.figure(figsize=(9, 6))projection = ccrs.PlateCarree()ax = plt.axes(projection=projection)ax.set_extent([97, 109, 26, 34], crs=projection)$ f! K( ^2 Y, X8 u
添加四川地图 shap=Reader('SCmap.shp').geometries()sichuan = cfeature.ShapelyFeature(shap,crs=ccrs.PlateCarree(),edgecolor='k', facecolor='none')ax.add_feature(sichuan)$ j) ]! o! x0 \
设置x、y轴经纬度刻度 gv.set_axes_limits_and_ticks(ax,xticks=np.linspace(97, 109, 5),yticks=np.linspace(26, 34, 5))gv.add_lat_lon_ticklabels(ax)gv.add_major_minor_ticks(ax,x_minor_per_major=1,y_minor_per_major=1,labelsize=12)# Remove ticks on the top and right sides of the plotax.tick_params(axis='both', which='both', top=False, right=False)
+ _) _8 h' S u) i6 R9 Q1 I) z; Y' t* F" H- i9 c
绘制不同降水区间散点图 masked_lon = np.where(rain < scales[0], lon, np.nan)masked_lat = np.where(rain < scales[0], lat, np.nan)plt.scatter(masked_lon,masked_lat,s=sizes[0],color=marker_colors[0],zorder=1)for x in range(1, len(scales)): masked_lon = np.where(rain >= scales[x - 1], lon, np.nan) masked_lon = np.where(rain < scales[x], masked_lon, np.nan) masked_lat = np.where(rain >= scales[x - 1], lat, np.nan) masked_lat = np.where(rain < scales[x], masked_lat, np.nan) plt.scatter(masked_lon,masked_lat,s=sizes[x],color=marker_colors[x],zorder=1)masked_lon = np.where(rain >= scales[-1], lon, np.nan)masked_lat = np.where(rain >= scales[-1], lat, np.nan)plt.scatter(masked_lon,masked_lat,s=sizes[-1],color=marker_colors[-1],zorder=1)
+ I) ~/ A/ E6 O: Z* f0 j! s考标记出某一站点 plt.colorbar(mappable=mappable,ax=ax,orientation='horizontal',label='Rainfall Amount(mm)', drawedges=True,format='%.2f',ticks=scales)plt.scatter(103.12,30.08,s=20)plt.annotate(r'$mingshan$', xy=(103.12,30.08),xytext=(4,-100),xycoords='data',textcoords='offset points', fontsize=16,arrowprops=dict(arrowstyle='->',connectionstyle='arc3'))plt.savefig('test.png')
& o w6 {3 o$ L' }
3 n7 C1 d6 s& Y, D% C5 A |