- 在线时间
- 468 小时
- 最后登录
- 2025-7-15
- 注册时间
- 2023-7-11
- 听众数
- 4
- 收听数
- 0
- 能力
- 0 分
- 体力
- 7460 点
- 威望
- 0 点
- 阅读权限
- 255
- 积分
- 2818
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 1160
- 主题
- 1175
- 精华
- 0
- 分享
- 0
- 好友
- 1
该用户从未签到
 |
NSGA-II(Nondominated Sorting Genetic Algorithm II)是一种多目标优化算法,由卡尔扬莫伊·德布(Kalyanmoy Deb)教授于2002年提出。它是基于遗传算法的演化算法,专注于解决具有多个冲突目标的优化问题。
! G3 }* \4 c* T/ J$ Q9 B这个算法的主要目标是在优化中发现并维护解的前沿(或称为帕累托前沿),即在多个目标函数之间找到没有更好解的解集。NSGA-II通过两个主要的策略来实现这一目标:
5 T9 B: }! A% [/ X! H. m( L
( y! m; D/ x3 U7 Q5 g/ P( S# o1.非支配排序:将解划分为不同的层级,根据解的优劣程度将其分为不同的前沿等级。这个过程能够识别出解的非支配性,即解在目标空间中既不劣于其他解也不与其完全相同。
! E' o2 B7 K! E7 n2.拥挤度距离:用于评估解在前沿中的分布情况。这个指标有助于维持解的多样性,即使在前沿中某些地区拥挤度较高,也能保持解的分布均匀性。' Q& p* u4 H) |/ u. d
5 x& N' B3 {: W, v% {) D
NSGA-II算法通过遗传算法的进化操作(选择、交叉和变异)在解集中不断进化和优化,以逼近或探索帕累托前沿。它在解决多目标优化问题方面表现出色,被广泛应用于工程设计、经济学、资源分配和其他领域中需要平衡多个目标的问题。
9 s& s* g( J" S, |; j& I, a; ^$ n! S$ I/ I9 C, I2 e& S" w
5 |! t9 t+ y; M9 m+ @+ O6 _
具体代码如下:
: c2 G! r- z9 P' E8 T) G# V2 H4 }% [# _% e% j" I2 h4 S
: A S2 {9 H- _& n |
zan
|