- 在线时间
- 468 小时
- 最后登录
- 2025-7-19
- 注册时间
- 2023-7-11
- 听众数
- 4
- 收听数
- 0
- 能力
- 0 分
- 体力
- 7541 点
- 威望
- 0 点
- 阅读权限
- 255
- 积分
- 2842
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 1160
- 主题
- 1175
- 精华
- 0
- 分享
- 0
- 好友
- 1
该用户从未签到
 |
KNN(K-Nearest Neighbors)是一种常用的基于实例的分类算法,它是一种简单而有效的监督学习方法。KNN算法的核心思想是:如果一个样本在特征空间中的k个最相似(即特征空间中最近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。
! v6 v* B" s8 o5 g; R' Z" E% M9 ?/ R0 Y3 b3 k
KNN算法的功能主要包括以下几点:
9 C6 g+ [4 B5 K B8 X& ]
/ p9 }, j3 x& B) C: H1. 分类:KNN算法可以用于分类问题,即将一个未知样本分到已知类别中的某一类。根据样本在特征空间中的k个最近邻居的类别,通过多数投票的方式确定未知样本的类别。* k3 o9 j K" j
) C% b" o* U2 M: v, B
2. 回归:除了分类问题,KNN算法还可以应用于回归问题。在回归问题中,KNN算法通过对k个最近邻居的输出值进行加权平均来预测未知样本的输出值。! V% W1 j% `3 X
; `9 i5 {: \! h0 o
3. 简单易懂:KNN算法简单直观,易于理解和实现。它不需要训练阶段,仅需要保存训练集数据,因此适用于小规模数据集。- s. `9 g, I- Z) [! L( z
$ i$ _7 {# y; Y) E7 R% f( x. G4. 非参数化:KNN算法是一种非参数化方法,不对数据分布做出任何假设。这使得KNN算法在处理非线性、复杂数据集时表现较好。
4 |0 G* j$ y. ^& w+ B# d! n: O8 {, \( r: h3 {8 N
5. 鲁棒性:KNN算法对异常值和噪声数据具有一定的鲁棒性,因为它是基于邻近的样本进行决策的,而不是依赖整体数据的分布情况。) o* ?5 M$ v6 Y3 R. J
1 L( y7 \0 H9 q总的来说,KNN算法是一种简单而强大的分类和回归算法,适用于小规模数据集和非线性问题。它具有直观的思想和良好的鲁棒性,是机器学习领域中常用的算法之一。, }- W2 ~2 f# q" s1 a5 }8 w# ?/ B
/ o4 e6 J5 x; y/ n7 x Y
4 T J: C( E* ?
6 l& L* \- D! j4 h* t# P3 K5 O |
-
-
KNN.m
1.29 KB, 下载次数: 1, 下载积分: 体力 -2 点
售价: 2 点体力 [记录]
zan
|