QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 2494|回复: 6
打印 上一主题 下一主题

Ultra-Fast Outflows Help Monster Black Holes Shape Their Galaxies

[复制链接]
字体大小: 正常 放大
张立涛 实名认证       

280

主题

5

听众

2452

积分

  • TA的每日心情
    奋斗
    2015-10-7 09:09
  • 签到天数: 75 天

    [LV.6]常住居民II

    优秀斑竹奖

    群组西北工业大学

    群组Matlab讨论组

    群组狂热数模爱好者

    群组岩土力学与地下工程

    跳转到指定楼层
    1#
    发表于 2012-2-28 19:16 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    Ultra-Fast Outflows Help Monster Black Holes Shape Their Galaxies


    A curious correlation between the mass of a galaxy's central black hole and the velocity of stars in a vast, roughly spherical structure known as its bulge has puzzled astronomers for years. An international team led by Francesco Tombesi at NASA's Goddard Space Flight Center in Greenbelt, Md., now has identified a new type of black-hole-driven outflow that appears to be both powerful enough and common enough to explain this link.

    120227162801-large.jpg

    The supermassive black holes in active galaxies can produce narrow particle jets (orange) and wider streams of gas (blue-gray) known as ultra-fast outflows, which are powerful enough to regulate both star formation in the wider galaxy and the growth of the black hole. Inset: A close-up of the black hole and its accretion disk.


    Most big galaxies contain a central black hole weighing millions of times the sun's mass, but galaxies hosting more massive black holes also possess bulges that contain, on average, faster-moving stars. This link suggested some sort of feedback mechanism between a galaxy's black hole and its star-formation processes. Yet there was no adequate explanation for how a monster black hole's activity, which strongly affects a region several times larger than our solar system, could influence a galaxy's bulge, which encompasses regions roughly a million times larger.
    "This was a real conundrum. Everything was pointing to supermassive black holes as somehow driving this connection, but only now are we beginning to understand how they do it," Tombesi said.
    Active black holes acquire their power by gradually accreting -- or "feeding" on -- million-degree gas stored in a vast surrounding disk. This hot disk lies within a corona of energetic particles, and while both are strong X-ray sources, this emission cannot account for galaxy-wide properties. Near the inner edge of the disk, a fraction of the matter orbiting a black hole often is redirected into an outward particle jet. Although these jets can hurl matter at half the speed of light, computer simulations show that they remain narrow and deposit most of their energy far beyond the galaxy's star-forming regions.
    Astronomers suspected they were missing something. Over the last decade, evidence for a new type of black-hole-driven outflow has emerged. At the centers of some active galaxies, X-ray observations at wavelengths corresponding to those of fluorescent iron show that this radiation is being absorbed. This means that clouds of cooler gas must lie in front of the X-ray source. What's more, these absorbed spectral lines are displaced from their normal positions to shorter wavelengths -- that is, blueshifted, which indicates that the clouds are moving toward us.
    In two previously published studies, Tombesi and his colleagues showed that these clouds represented a distinct type of outflow. In the latest study, which appears in the Feb. 27 issue of Monthly Notices of the Royal Astronomical Society, the researchers targeted 42 nearby active galaxies using the European Space Agency's XMM-Newton satellite to hone in on the location and properties of these so-called "ultra-fast outflows" -- or UFOs, for short. The galaxies, which were selected from the All-Sky Slew Survey Catalog produced by NASA's Rossi X-ray Timing Explorer satellite, were all located less than 1.3 billion light-years away.
    The outflows turned up in 40 percent of the sample, which suggests that they're common features of black-hole-powered galaxies. On average, the distance between the clouds and the central black hole is less than one-tenth of a light-year. Their average velocity is about 14 percent the speed of light, or about 94 million mph, and the team estimates that the amount of matter required to sustain the outflow is close to one solar mass per year -- comparable to the accretion rate of these black holes.
    "Although slower than particle jets, UFOs possess much faster speeds than other types of galactic outflows, which makes them much more powerful," Tombesi explained.
    "They have the potential to play a major role in transmitting feedback effects from a black hole into the galaxy at large."
    By removing mass that would otherwise fall into a supermassive black hole, ultra-fast outflows may put the brakes on its growth. At the same time, UFOs may strip gas from star-forming regions in the galaxy's bulge, slowing or even shutting down star formation there by sweeping away the gas clouds that represent the raw material for new stars. Such a scenario would naturally explain the observed connection between an active galaxy's black hole and its bulge stars.
    Tombesi and his team anticipate significant improvement in understanding the role of ultra-fast outflows with the launch of the Japan-led Astro-H X-ray telescope, currently scheduled for 2014. In the meantime, he intends to focus on determining the detailed physical mechanisms that give rise to UFOs, an important element in understanding the bigger picture of how active galaxies form, develop and grow.
    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    优秀的男人最有魅力!

    0

    主题

    4

    听众

    15

    积分

    升级  10.53%

  • TA的每日心情
    无聊
    2013-8-26 15:34
  • 签到天数: 2 天

    [LV.1]初来乍到

    回复

    使用道具 举报

    0

    主题

    4

    听众

    15

    积分

    升级  10.53%

  • TA的每日心情
    无聊
    2013-8-26 15:34
  • 签到天数: 2 天

    [LV.1]初来乍到

    回复

    使用道具 举报

    jt202010 实名认证    中国数模人才认证  会长俱乐部认证 

    109

    主题

    165

    听众

    1万

    积分

    升级  0%

  • TA的每日心情
    奋斗
    2024-4-24 15:07
  • 签到天数: 3466 天

    [LV.Master]伴坛终老

    社区QQ达人 邮箱绑定达人 最具活力勋章 发帖功臣 风雨历程奖 新人进步奖

    群组数学建模

    群组自然数狂想曲

    群组2013年数学建模国赛备

    群组第三届数模基础实训

    群组第四届数学中国美赛实

    回复

    使用道具 举报

    jt202010 实名认证    中国数模人才认证  会长俱乐部认证 

    109

    主题

    165

    听众

    1万

    积分

    升级  0%

  • TA的每日心情
    奋斗
    2024-4-24 15:07
  • 签到天数: 3466 天

    [LV.Master]伴坛终老

    社区QQ达人 邮箱绑定达人 最具活力勋章 发帖功臣 风雨历程奖 新人进步奖

    群组数学建模

    群组自然数狂想曲

    群组2013年数学建模国赛备

    群组第三届数模基础实训

    群组第四届数学中国美赛实

    回复

    使用道具 举报

    Anke001        

    0

    主题

    4

    听众

    642

    积分

    升级  10.5%

  • TA的每日心情
    无聊
    2012-11-1 11:36
  • 签到天数: 187 天

    [LV.7]常住居民III

    回复

    使用道具 举报

    74

    主题

    6

    听众

    3283

    积分

    升级  42.77%

  • TA的每日心情
    无聊
    2015-9-4 00:52
  • 签到天数: 374 天

    [LV.9]以坛为家II

    社区QQ达人 邮箱绑定达人 发帖功臣 最具活力勋章

    群组数学建摸协会

    群组Matlab讨论组

    群组小草的客厅

    群组数学建模

    群组LINGO

    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2024-4-27 23:01 , Processed in 0.600202 second(s), 92 queries .

    回顶部