QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 60126|回复: 104
打印 上一主题 下一主题

<质数分布模式的建立及其应用>与《附件》

[复制链接]
字体大小: 正常 放大
trx        

18

主题

5

听众

234

积分

升级  67%

该用户从未签到

跳转到指定楼层
1#
发表于 2010-8-30 08:37 |只看该作者 |正序浏览
|招呼Ta 关注Ta
Clipboard02.gif Clipboard03.gif Clipboard04.gif Clipboard021.gif Clipboard05.gif Clipboard06.gif Clipboard07.gif Clipboard09.gif Clipboard08.gif Clipboard011.gif Clipboard012.gif Clipboard013.gif

Clipboard014.gif (21.77 KB, 下载次数: 291)

Clipboard014.gif

Clipboard015.gif (22.33 KB, 下载次数: 302)

Clipboard015.gif

Clipboard016.gif (16.36 KB, 下载次数: 285)

Clipboard016.gif

Clipboard017.gif (18.96 KB, 下载次数: 305)

Clipboard017.gif

Clipboard018.gif (17.72 KB, 下载次数: 301)

Clipboard018.gif

Clipboard019.gif (19.08 KB, 下载次数: 265)

Clipboard019.gif

Clipboard020.gif (18.22 KB, 下载次数: 288)

Clipboard020.gif

Clipboard026.gif (25.76 KB, 下载次数: 296)

Clipboard026.gif

Clipboard027.gif (34.83 KB, 下载次数: 323)

Clipboard027.gif

Clipboard028.gif (27.25 KB, 下载次数: 307)

Clipboard028.gif

Clipboard029.gif (26.11 KB, 下载次数: 290)

Clipboard029.gif

Clipboard030.gif (25.46 KB, 下载次数: 317)

Clipboard030.gif

Clipboard031.gif (26.44 KB, 下载次数: 304)

Clipboard031.gif

Clipboard032.gif (25.17 KB, 下载次数: 297)

Clipboard032.gif

Clipboard033.gif (26.79 KB, 下载次数: 313)

Clipboard033.gif

Clipboard034.gif (43.6 KB, 下载次数: 318)

Clipboard034.gif

zan
转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持1 反对反对0 微信微信
无效楼层,该帖已经被删除
drtdxdy        

0

主题

9

听众

189

积分

升级  44.5%

  • TA的每日心情
    开心
    2015-1-17 12:42
  • 签到天数: 29 天

    [LV.4]偶尔看看III

    自我介绍
    喜欢数学

    社区QQ达人

    回复

    使用道具 举报

    0

    主题

    4

    听众

    20

    积分

    升级  15.79%

  • TA的每日心情

    2013-9-12 15:21
  • 签到天数: 10 天

    [LV.3]偶尔看看II

    自我介绍
    aaaaaaaaaaaa
    回复

    使用道具 举报

    trx        

    18

    主题

    5

    听众

    234

    积分

    升级  67%

    该用户从未签到

    著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微,数形结合百般好,隔离分家万事休。”并一语双关地告诫学生“不要得意忘形”!
    % o8 B& [& }* t* |美国数学家斯蒂恩说:“如果一个特定的问题可以转化为一个图形,那么思想就整体地把握了问题,并能创造性思索问题的解法。”
    , f- Q9 B% B  h诺贝尔奖获得者,认知心理学家西蒙也指出:“人们在解决数学问题时,大多数是通过模式识别来解决的。”
    ) m$ Z. `: J( i+ {   据上几位著名大师的经典之说,则本文通篇对一系列与质数相关的问题之论,就是以
    4 b( O" H4 z! k$ \质数最原始最基础的图形性质---质数作周期性占位之“形”为主导的‘形’‘数’相结合讨论而进行的。则把此种讨论总称为《周期数论》。
    3 i0 e7 b4 S8 ~+ F  a8 }
    回复

    使用道具 举报

    1

    主题

    4

    听众

    63

    积分

    升级  61.05%

    该用户从未签到

    论坛有很多新闻到这里了


    4 w! f' k/ F$ _" p 4 U& Z  U& }& a# K7 H  o

    + Q/ C/ Y# U6 [( E" ]
    : q6 J) S# z7 p: j( Z7 h+ q论坛有很多新闻到这里了,也不错哦。
    : [( |9 l/ h3 A1 _, g/ o# p7 ~6 t/ p $ T& U3 }0 w# ?7 k
    0 d% J' }  F& S

    " L% Q2 T' C3 ?$ S ' o+ q3 n: ^9 A. ~: }0 k

    2 x% J, N. y6 @2 K3 } " b% h! g- V0 H+ A& r4 z

    7 z8 E: a# O( C% h$ ~5 m
    回复

    使用道具 举报

    99#
    无效楼层,该帖已经被删除

    74

    主题

    6

    听众

    3289

    积分

    升级  42.97%

  • TA的每日心情
    无聊
    2015-9-4 00:52
  • 签到天数: 374 天

    [LV.9]以坛为家II

    社区QQ达人 邮箱绑定达人 发帖功臣 最具活力勋章

    群组数学建摸协会

    群组Matlab讨论组

    群组小草的客厅

    群组数学建模

    群组LINGO

    回复

    使用道具 举报

    0

    主题

    4

    听众

    7

    积分

    升级  2.11%

    该用户从未签到

    对不起楼主,由于本人是新手,无发贴的权利,只好将我的一篇论文登在此处,与大家探讨。
    - {" s/ K# w! M) o" h5 B用求根方法巧妙证明费马猜想
    1 y% g5 F  ]( Q7 N3 i作者:刘孝强
    + A, D9 B7 w: J# @. u) W一、费马猜想简介:
    $ {! X6 T4 G2 ~5 v1 C1.费马猜想: 当整数n > 2时,关于x, y, z的不定方程 x^n + y^n = z^n无正整数解。9 h. v2 J$ O* n2 Z' B- W& D6 P
    2.费马在阅读丢番图《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。关于此,我确信已发现了一种美妙的证法,可惜这里空白的地方太小,写不下。”(拉丁文原文: "Cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet.")毕竟费马没有写下证明,而他的其它定理对数学贡献良多,由此激发了许多数学家对这一猜想的兴趣。数学家们的有关工作丰富了数论的内容,推动了数论的发展。  n; ]4 Z3 q' f( F
    3.这个猜想,本来又称费马最后定理,由17世纪法国数学家费马提出,而当时人们称之为“猜想”,并不是真的相信费马已经证明了它。虽然费马宣称他已找到一个绝妙证明,但经过三个半世纪的努力,这个世纪数论难题才由普林斯顿大学英国数学家安德鲁•怀尔斯和他的学生理查•泰勒于1995年成功证明。证明利用了很多新的数学,包括代数几何中的椭圆曲线和模形式,以及伽罗华理论和Hecke代数等,令人怀疑费马是否真的找到了正确证明。而安德鲁•怀尔斯(Andrew Wiles)由于成功证明此猜想,获得了1998年的菲尔兹奖特别奖以及2005年度邵逸夫奖的数学奖。
    & M$ Q0 l1 J9 I甚至有许多数学家断言:费马猜想不可能用初等数学的方法证明。
    / q% F. o9 g- G" `3 Z7 A二、求根方法证明费马猜想简介:0 V* s( M8 ]( P, ~3 ^
    安德鲁•怀尔斯的证明十分繁琐,而本人以下的证明十分简明。
    4 d1 E- H$ N& `2 f9 G1.我们知道费马猜想即:当n > 2时,不定方程x^n + y^n = z^n 没有正整数解。为了证明这个结果,只需证明方程x^4 + y4^ = z^4 (x , y,z) = 1和方程x^p + y^p = z^p (x , y,z) = 1[p是一个奇素数]均无正整数解即可。
    ; R! B, F$ M& L: Rn = 4的情形已由莱布尼茨和欧拉解决。- V! v* ~) D1 D. ?) L% z
    现在本人用求根方法来证明x^p + y^p = z^p ,(x , y,z)= 1[p是一个奇素数]无正整数解。
    2 ^% h) P/ ]' [# E! E4 \$ U- ~因(x , y,z)= 1,很容易证明x和 y,要么均为奇数,要么为一奇一偶。
    * Z5 Q5 ]  R) V0 w; X& N, e2.为了证明简单明了,我们先来看p=3的情形。我这种证明方法可推出p为任何奇素数的对费马猜想的一般证明:当p≥3的素数时,x^n+y^n=z^n无正整数解。% y$ O, H  I/ G9 w3 J
    用反证法。假定 x^3+y^3=z^3有正整数解。有x和 y要么均为奇数,要么为一奇一偶。不妨假设y为奇数。那么有:7 I# E; ^$ z; s0 t0 |
    z^3 = x^3 + y^3=(x + y)(x^2 + y^2-xy)。
    1 o9 S) P/ `" ~1 v" p6 ]- }设x^2 + y^2-xy=A,即x^2 -xy + y^2-A =0,把此式看成关于x的一元二次方程。: B* K* H5 S& m$ v. L
    为了后面的证明,我把x^2 -xy + y^2-A =0这样的方程称为标准方程。' a* o  O! G* y
    即求x^2 -xy +y^2-A =0的解。用求根公式,有x=-(-y)±√(-y)^2-4(y^2-A)/2(注:√表示根号)= y±√(-y)^2-4y^2+4A/2= y±√4A-3y^2/2=  y±√4(x^2 + y^2-xy)-3y^2/2= y±√(2x -y)^2/2。因(2x -y)^2≥0,所以方程在实数范围内有根。这里需要讨论:
    1 }; L' v. G4 Q" H" e1 V(1)当2x -y>0时,因x= y±√(2x -y)^2/2,可得x=x,或x = y/2 即y= 2x(这与2x -y>0相矛盾,舍去)。) m7 t0 l7 A% ?* O* v
    (2)当2x -y<0时,因x= y±√(2x -y)^2/2,可得x=x,,或x = y/2 即y= 2x(这与2x -y<0相矛盾,舍去)。
    & ~0 p9 `" y# e(3)当2x -y=0时,因x= y±√(2x -y)^2/2,可得y= 2x。: t( \$ @. O, n+ n) f5 \5 l
    综合上面三种情况:在实数范围内,x^2 -xy + y^2-A =0有实根x=x或x = y/2 即y= 2x。7 N4 n- m7 h: ~+ P3 |2 K
    但显然在正整数范围内,因y= 2x,有y为偶数,与前面假设y为奇数相矛盾。也就是说x^3+y^3=z^3在正整数范围内无解。! s: e  ^' K' u" C" a8 E
    为进一步明白我的思路,现在来看x^5 + y^5=z^5的情况。这时有x和 y要么均为奇数,要么为一奇一偶。不妨假设y为奇数。那么:
    - ?3 z3 [/ q# U( ^Z^5= x^5 + y^5=(x + y)(x^4 + xy^3-x^2y^2+ x^3y+y^4)' U) P# _$ N" P3 ?) Y7 E
    设x^4 + xy^3-x^2y^2+x^3y+ y^4=M,又设x^4-x^2y^2+ y^4=M- xy^3 -x^3y =C,即x^4+ y^4-x^2y^2- C = 0,用代元法,设x^2=X ,y^2=Y,有:X^2+ Y^2-XY- C = 0,这就成了标准方程,从而可用证明标准方程的方法进行证明即可。采用上面的方法,在实数范围内,有由X = X或X= Y/2 即Y= 2X。但在正整数范围内,由Y= 2X,有y^2= 2x^2,这时y为偶数,与前面假设y为奇数相矛盾。也就是说x^5+y^5=z^5在正整数范围内无解。. W0 p' K! x' K% _/ i6 }7 l
    现在来看费马猜想的一般情形:同样用反证法。假定x^P+y^P=z^P(p是一个奇素数)有正整数解。这时有x和 y要么均为奇数,要么为一奇一偶。不妨假设y为奇数。那么因z^P=x^P-y^P=(x + y)(x^P-1+xy^p-2+…- x ^p-1/2y^p-1/2+…+ x^P-2y+ yP-1),设(x^P-1+xy^p-2+…- x ^p-1/2y^p-1/2+…+ x^P-2y+ y^P-1)=C,即x^P-1+…- x^ p-1/2y^p-1/2+…+ x^P-2y + y^P-1-C=0,设D=C-(xy^p-2+…+ x^P-2y),采用上面的方法很容易推出方程:x^P-1-x^p-1/2y^p-1/2+y^P-1-D=0,用代元法设x^ P-1/2=X ,y^p-1/2=Y,有:X^2+ Y^2-XY- D = 0,这就成了标准方程,从而按证明标准方程的方法就可以证明:x^P+y^P=z^P(p是一个奇素数)无正整数解。
    3 ~! l" }" f7 l; [: O0 R1 {证毕。
    : s& s4 ^1 M6 H, J4 k! y7 I7 X
    8 C- S# x2 V* g3 X                         2010年12月3日$ f4 ~! u' k9 T6 Z# `1 t/ v

    " z8 N: h; M8 j$ D* b, n(作者单位:四川省万源市太平镇。QQ号:516030331)
    4 b- Z- N+ x% Q, y- \0 H' ~6 X; r9 P7 t# h% \7 r4 e
    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-7-15 16:03 , Processed in 0.766166 second(s), 93 queries .

    回顶部