- 在线时间
- 0 小时
- 最后登录
- 2011-10-7
- 注册时间
- 2010-9-1
- 听众数
- 3
- 收听数
- 0
- 能力
- 0 分
- 体力
- 31 点
- 威望
- 0 点
- 阅读权限
- 20
- 积分
- 13
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 11
- 主题
- 4
- 精华
- 0
- 分享
- 0
- 好友
- 1
升级   8.42% 该用户从未签到
 |
P=[0.1093,0.1110,0.1127,0.1141,0.1154,0.1164,0.1171,0.1175,0.1178,0.1179,0.1179,0.1179,0.1179,0.1180,0.1182];
/ D+ `* E2 R2 ?4 M: }$ J5 hT=[0.1110,0.1127,0.1141,0.1154,0.1164,0.1171,0.1175,0.1178,0.1179,0.1179,0.1179,0.1179,0.1180,0.1182,0.1185];2 E, c: z E$ o
% 创建一个新的前向神经网络 # U) l7 F F# H7 l
net_1=newff(minmax(P),[10,1],{'tansig','purelin'},'traingdm')
7 m" N& T1 {2 J& B% 当前输入层权值和阈值
) F# b( p( q# zinputWeights=net_1.IW{1,1}6 w2 X6 `, N5 m- L$ ]
inputbias=net_1.b{1}
9 U' a# N2 x) n# n; E7 e% 当前网络层权值和阈值9 u( o2 F7 J( r; _ L9 I
layerWeights=net_1.LW{2,1}$ f ^$ q" c6 Z q! {, q( y% K! r
layerbias=net_1.b{2}
# S$ p4 ^' U, U8 c4 D* L% 设置训练参数( _2 D# S+ g3 [8 G6 d1 {' {0 L
net_1.trainParam.show = 50;
5 z. k! t- _! e0 u6 Bnet_1.trainParam.lr = 0.05;) h Q$ C+ o7 \
net_1.trainParam.mc = 0.9;& V# G3 c+ c/ L! g. k7 z+ F" ~, m
net_1.trainParam.epochs = 10000;6 E; A2 F+ v3 n/ p6 f0 T
net_1.trainParam.goal = 1e-3;
/ }- b4 f9 v& ^) B' L- \% 调用 TRAINGDM 算法训练 BP 网络
2 e% w& @6 z8 R4 b$ }. P[net_1,tr]=train(net_1,P,T);: e& m/ z; a6 S
% 对 BP 网络进行仿真
% m! z) u1 y( K3 Q, p! J* ~' @) AA = sim(net_1,P);
" ?( H6 i9 m" m' ?! r& [% 计算仿真误差 : X: d/ t5 a6 y6 R/ [: D
E = T - A;
! e) R( S, L. P" }8 C9 nMSE=mse(E)
( n) W! [$ ~! E. |& ?8 }x=[0.1110,0.1127,0.1141,0.1154,0.1164,0.1171,0.1175,0.1178,0.1179,0.1179,0.1179,0.1179,0.1180,0.1182,0.1185]';%测试
, p. r2 u- `% x& j7 k4 b; Bsim(net_1,x)
4 U$ L( }( ^- J# \6 t; b( [2 w( r这段程序是根据14年的数据,来预测下一年的,怎么算不出来啊 。 Z9 f5 p1 u" _8 h: x7 T n
|
zan
|