- 在线时间
- 40 小时
- 最后登录
- 2014-5-17
- 注册时间
- 2012-8-4
- 听众数
- 4
- 收听数
- 0
- 能力
- 0 分
- 体力
- 314 点
- 威望
- 0 点
- 阅读权限
- 30
- 积分
- 160
- 相册
- 0
- 日志
- 0
- 记录
- 2
- 帖子
- 130
- 主题
- 2
- 精华
- 0
- 分享
- 0
- 好友
- 5
升级   30% TA的每日心情 | 开心 2014-5-17 22:06 |
|---|
签到天数: 54 天 [LV.5]常住居民I
- 自我介绍
- 嘻嘻嘻
 |
简单的介绍一下几个概念,顺便推荐几本好书。
3 D. u8 w5 ~6 @0 w6 ]8 r- n Q一.数学模型的定义
6 _6 n J9 F$ Z' }$ p' b 现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。不过我们可以给出如下定义。"数 学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。"具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图象、框图等描述客观事物的特征及其内在联系的数学结构表达式。; {! G1 m- j/ {+ o1 S' l b8 ^ g2 Z
二.建立数学模型的方法和步骤# n$ c) x# g1 a5 j9 l' U
第一、 模型准备
! v# I" a- Q9 h" d4 P, |9 e 首先要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。
/ ~4 \9 }" }) ?! S第二、 模型假设
" j# f* a* Z6 M1 @$ o 根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力 ,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。8 }6 V6 l3 j# f
第三、 模型构成
: P* }3 V, ?; Z$ A 根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。 \# J2 c( o5 [4 Y2 Y3 j: |2 Q
第四、模型求解% Z: s7 ]% d5 e' B+ Q3 J4 i4 K& k$ F
可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。0 y9 E* n l1 V; D1 t
第五、模型分析
2 E0 B1 j" \- O" k! N 对模型解答进行数学上的分析。"横看成岭侧成峰,远近高低各不同",能否对模型结果作出细致精当的分析,决定了你的模型能否达到更高的档次。还要记住,不论那种情况都需进行误差分析,数据稳定性分析。
4 w8 @ t# M# [' h
: G; N& n: |2 i7 _5 V' [关于数模竞赛的几本好书, m6 `: `1 ]% h
<<数学建模竞赛培训教材>> 共三本 叶其孝主编, v/ _9 g4 C4 [/ V
<<数学模型>> 第二版 姜启源# P d: V7 B7 }9 A4 Z9 F
<<随机规划>>
$ z; A! T2 S- Y/ h2 P8 g: U& {8 V& W<<模糊数学>> 9 n" A- V f+ a8 M) O i! T' u
<<数据结构>>
( m+ ?( Y" w8 ~2 J- D" K; D; K<<数学建模入门>> 徐全智! h3 n1 R8 L7 |) v# c3 j
<<计算机算法设计与分析>> 国防科大 |
zan
|