数学专业英语-(a) How to define a mathematical term?0 m" R7 Z" f0 q
' a( l0 Q P# z3 y1 O( T4 x
3 [# T& B6 M$ c* l$ S/ @
) Q: ?! j* A$ m$ s( c) K# z
2 A( i% l0 a; \) V' c
数学术语的定义和数学定理的叙述,其基本格式可归纳为似“if…then…”的格式,其他的格式一般地说可视为这一格式的延伸或变形。 & t. ~" n# T( O* _( h+ p2 Z- A
, b4 H* o3 }$ J3 ]& X# H
, j- F N3 M1 F2 M
; d; ?* A+ Y" v8 k! O5 l) x 如果一定语短语或定语从句,以界定被定义的词,所得定义表面上看虽不是“If……then……”的句型,而实际上是用“定语部分”代替了“If”句,因此我们可以把“定语部分”写成If句,从而又回到“If……then……”的句型。 + p$ X& T, C. Z* N
" |9 H; K* T& t4 y
! B4 S+ {% B: o/ h% f 至于下面将要叙述的“Let…if…then”,“Let and assume…, If…then…”等句型,其实质也是基本句型“If……then……”的延伸。 5 w7 W3 X! k5 a' T+ L* o
; H" I9 ~; G) S3 j " Z) r% C0 D9 Q; m o
有时,在定义或定理中,需要附加说明某些成份,我们还可在“if…then…”句中插入如“where…”等的句子,加以延伸(见后面例子)。 + A* r8 h* H: D( V
0 z( P' R9 D K- O, o ' m6 G) I- ^: E; }
总之,绝大部分(如果不是全部的话)数学术语的定义和定理的叙述均可采用本附录中各种格式之。 ! A. ~7 ]: Y, \1 P& J" q4 q9 S
8 z4 }9 y# b+ q) V# `7 ?4 W0 S* [
( h( W6 j- D8 g' T# P
0 x" z" s- ~% f# ^
x& N, ?5 G( ]1 u; Q! M0 k 6 ]9 `1 V) e( L
9 X( _' l7 H+ m3 T! o
' ], }1 N6 t8 p! N* L9 T! E% o
8 k$ J9 I/ t4 u* p (a)How to define a mathematical term?
; |8 P( _, {3 n5 V* l. m1 S0 @, A. n: g8 {2 Y
! U& H* L w0 A% _8 h3 W
j5 R3 X* v0 d8 I! R, b
1 n$ ~+ [' I) l q
0 w: Q" u$ s# m0 P9 Z c! N5 n/ _1 i F( y. y. a
- L9 x# P& ^/ f- J1 I5 n: y
is defined as
5 T) H- Y1 p @ J% u* Y; x1 C1 T% Y0 L( {2 K- C
, t; h+ A; \( S+ ?5 `9 S& q/ B& b. z
is called # \" h- P( H6 E- z+ s0 b; r. i6 m' j$ N5 s
4 a" C) b7 ~5 G |
0 f* k, S9 n; M7 }) a# h" h1. Something something
, u! H' }- X# q3 o
$ Y( o* P- U- |1 z) W4 m1 o / J* d4 x0 ^0 i3 ~, v9 f
. ^. t3 c1 ]2 M) k7 ^4 `6 Q
2 J! y5 [5 k; J
0 r9 K/ ?. G5 E: r$ L8 N- e
8 C+ _; l: `: M1 I$ u
5 ]4 {, q6 h8 m
# h, N2 R, I1 l9 T' v3 N The union of A and B is defined as the set of those elements which are in A, in B or in both.
) W, m6 ]! z+ A5 i. T# J
) ^. X8 }1 G6 x+ O 1 s0 Z2 E: ?! d8 R" i0 ^# f" E' h
The mapping , ad-bc 0, is called a Mobius transformation.
# n1 x0 ^( t7 t# J7 d) W: `0 h& @1 M5 u& x
4 e* X, b1 \* C+ J& b2 m6 X
8 f% v% x. w4 L; u6 e9 o% s' |& q8 u- r9 P$ z
8 g% U1 @1 ~. @- h: t: p
1 z0 K1 p' ]7 j2 n! p; t is defined to be 5 ^( c, f; s* t- Q8 F
. Q7 ]1 P7 D# h, K
" v& z( I6 M# @( v1 B' `) ~; i
is said to be
7 j6 x# Z: l7 U2 L' D8 v3 H) I$ S9 H) J6 o2 ?1 o7 j% [
| - M# I5 p" s7 [. Z3 A: u
2. Something something(or adjective)
& X9 \* y5 O1 Y9 q* l3 |$ O0 A0 v- @) T! g: a
( i. L. a. b' F [6 y' o" S" S
9 v* o* x' s8 N" D) b+ L5 U7 g! Y5 A, L5 P8 ^
: Q. O2 T2 r. M; g 6 b: q! J" g, }0 I2 ^
' c) @$ B: `6 [" [
9 z+ X2 o( {4 L9 u- P# T l The difference A-B is defined to be the set of all elements of A which are not in B. ! `" s" ^( r4 R( t0 Q- K
5 ~6 h m: u7 S+ t6 ]9 `5 P; I
- ]( k) [, a" b+ ]8 n
A real number that cannot be expressed as the ratio of two integers is said to be an irrational number. + V6 Y4 K; k7 B% g+ l
9 R3 W$ v; A6 [, U, S0 t) Z C
4 u$ S, R8 j1 l' | Real numbers which are greater than zero are said to be positive. ; z4 t# F$ B# p7 c5 l0 Q- r
8 u i- L: K5 U/ @
; L7 R8 y }. \; }0 S3 j2 y8 T
% ]7 x- L8 u- l X9 p! f
+ r" P( A" A2 J8 T
G' J" C+ j! M1 O
% l# \" H6 A1 O9 ?: E. M define ( r4 Z& r1 i0 @) U& o
7 [9 Q6 c' a, s" n
' c* F- u2 R, F7 k6 x1 _+ U call - K$ _9 {, ^& x
" [1 m$ E) S* I. N! v& b
|
" l; U: _7 x- `3. We something to be something. 0 \9 n: I$ u$ F
& F A' K" S7 |) j" }
: }' ` e2 A6 _3 H ( Z; H! e* o/ ~
( @) U. P: \* h9 W0 C0 U
9 y! ? w1 k/ i) z! a2 g8 |9 g
! q4 Z( b) X2 g! o
4 h, r: b) l7 ?9 u ) L l4 V3 x9 e$ [8 o( _
We define the intersection of A and B to be the set of those elements common to both A and B. # | t% h$ S8 v$ d% B' w4 E
) c" e" z4 a9 @. M) T
( z: Q z3 ^+ s& @; Z" f5 J We call real numbers that are less than zero (to be) negative numbers. % h# \& o% t; G, Q
9 ?! Q y8 `, p" A. {- J7 E) l7 w
% ~$ M; k7 U9 E4 J' d
4. 如果在定义某一术语之前,需要事先交代某些东西(前提),可用如下形式: 2 h' ]: \) n2 r
: l8 W3 a" j. ~' p4 S1 h3 X9 M
9 v* Z' `4 x5 D* ~- Q2 T ) [" @; L' v6 |1 _. q* X/ g' q
) m, _, C7 e3 k0 s& \$ k, c6 C% E 2 ?7 k- i/ w2 v% O- H5 K9 g$ T4 B
$ B2 h" Y" \& ? ?
+ d" x( G( T0 }* G
# I, {6 k J: L( G0 l
9 r8 Q& i! u6 k: A8 ^
3 U9 S% y; o1 o. y& z# `& _' G$ b; N; B8 I, a" b
6 P5 e8 a$ R- Q- c/ F2 N4 \: Y
is called
, M$ @# u4 e9 O0 p. I8 F5 w* n& \* b# K/ e" G
6 p: y" u8 [* v6 @- S
is said to be : ?- W' r r5 I
- @) l4 J2 ?0 g& d ) |' |/ ~8 Z3 j5 P' c3 N- n3 F3 X
is defined as & Z' @* b* F' W P o
' C% Y; r. \# ^) x 7 V- O3 W3 D: }$ x8 o- \
is defined to be
8 S4 ?' U' f( ]# p! A' r
]0 M) ~ T& \ ` |
. p; J. |& X8 W6 J Let…, then… & a/ S* f- ~ F0 e3 q
W$ T; u4 Z& W$ w2 d6 ] \& `; Z
$ A" \( a& I% U+ c |
; t$ v, e4 Y9 \5 }# c4 ?% O+ P
1 E+ h9 M* |8 a& j" e- e 7 L4 ~. R: b% h) M+ V' g
5 E0 E: R$ s. Z2 m. Y. u
! P% J( j5 F) l ( M1 C" [+ G* E5 H
0 ?) Z$ O! w, [6 ^4 `( y6 W$ w5 K, k; B @8 A1 i
5 s9 H$ p) c0 r0 z. i- g/ O m/ i
9 h ~8 A/ C" o# @: c+ Z+ r6 |/ Q' E
; ~- X. Y. I; j, F0 a) O/ i! [ Let x=( ) be an n-tuple of real numbers. Then the set of all such n-tuples is defined as the Euclidean n-space R.
3 A0 D1 F. o$ q- w& H y. ~6 G- _" f$ L& O$ [" n8 j4 g: Y
4 R2 `2 T" S# s Let d(x,y) denote the distance between two points x and y of a set A. Then the number
. G5 x7 K; n) o7 e$ Q& P+ d G6 D3 [( g$ x- }/ |! k# \
4 J" I* A. M4 D3 {0 L9 T D= 2 `% j! ]% ^) [0 G: X" l, t
- s& M( O$ L) I* p+ h
4 |8 D8 P, M7 B% r+ Q4 ]. Z/ { is called the diameter of A.
7 j) F: n d0 J' e. }9 t& h6 b1 X* `
" a( E! P+ e' _! ~ 5.如果被定义术语,需要满足某些条件,则可用如下形式:
# C& w; g; c9 A) _+ T9 f8 O
* b2 O. }5 z- r ' o' T2 H, m. i, s$ ]
* E4 z, O6 S! d$ n$ m
7 B3 `/ J5 v2 }) I. i
% B3 n4 S) ]3 G5 ~$ J
4 T! ^& M' @! O i6 {3 T& b is called - R+ `' T# |% C0 W! _, O
2 ?+ e6 E* i* T6 x" m$ d
: e9 f; }2 v5 |; @# E is said to be
' N2 q2 d0 s2 e: K& j$ e
A1 s( w( W, x. i% O
. ]& l% v3 {) ^- n. V7 y [' H) f$ M is defined as
% p9 K8 \; }$ O; m) c
9 b$ U1 ? \! z( W
8 r" T5 @" q" e is defined to be 4 B& m/ ]" n5 ?) Z
1 Q) o5 P( K& B- O: B% N; h | 4 Z# v: L% b8 R. C% [4 v
If…, then…
0 E7 w& m' m1 q, E; f6 }$ ^/ @" J
# G' c* n" @4 A
c: L9 f. y h9 V5 c. _ + {% z4 o! [% h* d2 j! \( a
$ W9 @0 \1 d% a5 k
C* L$ ^% f7 m4 ~0 m2 T+ m3 R- m, V . H1 b/ r) m" H; P. e
( a2 ~9 _+ R$ n( \$ X7 b
2 S" u/ ?! e3 _9 l3 s3 { 1 N5 ] {& _; p' O0 {
- W9 l; |3 v( _ i( F9 q1 A2 G 1 h5 [1 o, ^5 v5 c) M5 i
, W; z0 q r% f! D4 N0 \+ _6 F5 Z( F2 ]0 v
3 E9 D1 S! L: g6 Z+ }6 ~" u1 j If the number of rows of a matrix A equals the number of its columns, then A is called a square matrix.
( u6 L4 [5 G: A: {& K; D; {( M$ b& M2 u' Z
+ V; \8 `: H& t
If a function f is differentiable at every point of a domain D, then it is said to be analytic in D.
5 p+ S" L& W+ C7 J- t( w4 O
* U1 d p3 T6 X8 ] % b, N) G7 V! t# m+ y/ o1 \8 p
6.如果需要说明被定义术语应在什么前提下,满足什么条件,则可用下面形式: t2 H8 h) L4 T. _, ?
: g+ \7 v9 u& Z% e 2 t) ^. {" g9 C% o Z; s: n/ J
! f A( ^0 O6 _
- C4 Y# X. w# }: T* [+ M0 b1 J8 ` z; s+ x% w* S& p
' _* Z1 @0 }& v( u' p
' Y0 H: V* ]* y. L* }
7 ?: R& P/ g4 x- V9 ]* xis called : |$ r8 j4 ]5 H0 a* ]3 r
is said to be | 3 N- p" U, N4 z. H( `% G
! F9 m. I# e2 M5 ~4 z5 s6 I
3 O, m' {7 ^ s/ g) n/ v) E. w. {$ x6 E) {9 t! T0 K
: F9 b/ f2 {( h7 w; z5 x. Y
# O, l" B: d- j0 D
Let ) f: S4 [0 F& i. L- {- @& ~3 d
Suppose | …. If…then… …
1 ?- q# H/ M5 E0 a8 m" S, A) C5 q; v4 K
, @, j* q* [0 d/ I& q; T4 R
8 t, r5 U* d! r( i* ~) g @8 t# G! @9 a8 M2 y- i
3 E% U& \; T2 s( q 1 P! z5 v# O% w4 h7 q8 ^/ Z
9 s7 ]; g" N; o9 i2 f1 V
; K7 M9 N4 p5 Z% p) u1 n' P5 C
Let f(z) be an analytic function defined on a domain D (前提条件). If for every pair or points , and in D with , we have f( ) f( ) (直接条件),then f(z) is called a schlicht function or is said to be schlicht in D. - L* R2 P5 e8 D9 ^' N
9 g2 g" o/ c. p! I g K9 k
! V( e9 u/ W7 _5 _ 8 b! u7 j3 P3 v/ n& F+ r8 i
c% L9 K D7 I! {) y
|