- 在线时间
- 2 小时
- 最后登录
- 2015-4-26
- 注册时间
- 2015-4-24
- 听众数
- 8
- 收听数
- 0
- 能力
- 0 分
- 体力
- 6 点
- 威望
- 0 点
- 阅读权限
- 10
- 积分
- 2
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 1
- 主题
- 1
- 精华
- 0
- 分享
- 0
- 好友
- 1
升级   40% 该用户从未签到 - 自我介绍
- 程序猿
 |
利用BP网络训练加法,代码如下,我是按照书上的公式敲的代码。对于最终的实验结果,有的结果还行,有的结果误差太多了,有人能帮我看看怎么回事吗?万分感谢!* T; p: }+ ]# ? `
ps:不要吐槽语言。我知道这是c c++杂交体。 - #include <stdio.h>9 `4 g! @9 y6 _) b/ g
- #include <time.h>( D0 i0 A5 A% i* I9 Y% Y* K& c5 K1 D
- #include <math.h>. h/ L\" Z7 K2 }; p$ R7 ~0 B
- #include <stdlib.h>
- ! z( P/ C+ Q7 ~) j- d#include <iostream>2 ?! [) D) W* h K
- using namespace std;6 u/ R/ u b1 ^\" ?2 q! b
- #define DATA 800
- ; e3 k% Z- x! x9 @. c! L' x& W#define IN 23 [! r# |1 ~# {. u/ b* N/ q
- #define OUT 1
- / u' a3 C: q0 J$ i$ k% A#define NEURON 459 |\" U- x2 f( D* ~3 ~& t
- #define TRAINC 20000
- Z3 a7 p; f( |$ M( R1 o
- ( [# G- T) i' ^double Fx(double x)
- 4 R3 Y( l5 C/ p; n+ k. ^- o{4 I T9 M$ E+ K7 E* M' v' L
- return 1 / (1 + exp(-1 * x));
- 1 l0 w1 a, d4 B4 [6 z: P}% w$ r( t2 K9 M. o+ m* c
- //La输入层 Lb隐藏层 Lc输出层5 D\" e! X0 V1 ~\" q) ?/ b& K
- //样本输入% i4 k; O) L; e/ ~2 H$ b
- double La[DATA][IN];. g% }1 i6 G8 \' y, c# R9 a
- //样本输出
- ) F\" |( ~! y& _7 B7 A& Sdouble Lc[DATA][OUT];
- 7 |/ I2 s5 B i\" d8 V//La->Lb权重
- ) ?, c' Z; y( Cdouble Wab[NEURON][IN];, B: B; r8 N' o7 H n1 f: H
- //Lb->Lc权重
- 6 b# r1 n' Q$ B/ [double Wbc[OUT][NEURON];8 W* \: {; o. n. j# J8 A; G
- //样本输入每个向量的最小值,最大值;输出...
- \" C4 t# J* h3 ?2 D/ Odouble MaxIn[IN], MaxOut[OUT], MinIn[IN], MinOut[OUT];
- ' N0 w. R7 C% u* e, V! F
- $ c( p1 p% @% e- `& L/ r! ]4 ~$ r: S//Lb层输出+ O$ j5 S& D5 @& J1 V1 q$ S
- double LbOut[NEURON];
- * e! z' V. X3 S4 S4 u0 S% b//Lc层输出) g+ x8 A3 I- _\" q( O
- double LcOut[OUT];
- 8 s( J$ y- w1 \9 i) T% q! f9 q# H& _' w
- ) {4 z k. K1 b0 g//Lc层单元的一般化误差6 I& A, J( [ v& j
- double Dc[OUT];5 u# j+ Y# m\" q5 T
- //Lb层单元的一般化误差8 j* |* @, g! N- U' k8 @5 Y7 i
- double Db[NEURON];. E/ F `8 X0 Y4 v
-
- 8 J) d9 e5 I7 K0 q5 i, G' b- U/ W//设置样本数据, a M. H' v' E; p# \+ [% F
- void setSample()& B/ h+ g5 T( z9 V5 l
- {
- # Z( x# n4 ?+ b4 h0 s' ~ srand((unsigned)time(NULL));$ K; e\" T( m0 _; k/ H( T
- int i, j;\" Y) p7 l$ z: c* e$ {- R; s
- for (i = 0; i < DATA; i++), m3 k, _$ s: ]
- {1 m! D; t\" v. {$ Z
- for (j = 0; j < IN; j++)
- $ Q$ G A- n) V7 X( f f: q9 D) Y( T; e {* J4 Z2 C& {* y' V! G
- La[j] = rand() % 1000 / 10.0;
- 4 b& l* [+ F' N2 {2 F' O+ |# E* U& [6 x }
- $ |# E, D& q# A- f ; Y1 ~1 W* w5 q6 f
- for (j = 0; j < OUT; j++)
- % y! |* x9 [1 `! q Lc[j] = La[0] + La[1];8 G6 R. }7 h* i2 \4 K3 x( i
- }
- & P2 }9 X4 Q' t( @4 D}
- # {& d\" b) Q8 ~\" D//初始化BP网络:权重,阈值(隐含节点+输出节点)
- : e) @& j/ g1 Nvoid initNet()
- - F' ~1 n. T9 }# x7 \1 k{1 w J7 y; C; f7 s% {+ D
- srand((unsigned)time(NULL));
- 6 L. Y8 H2 a {& c, D) h p //两部分的权值设置随机值【-1,1】0 p/ `) M+ L% [, u5 K' ^5 w
- int i, j;* D* m8 t* O1 G0 f* ~. v7 D
- for (i = 0; i < NEURON; i++) V/ ]) @8 P+ _* y I
- for (j = 0; j < IN; j++)
- 4 S/ ^( ]/ e3 u4 L {. ]6 G0 c: B2 Q1 }
- Wab[j] = rand()*2.0 / RAND_MAX - 1 ;$ l/ K/ Q3 C7 J* ] @
- Wab[j] /= 20;& x. j( f& U: q: F
- }\" Z/ o% S: `4 E4 o0 c
- & f& ^\" @+ K; t3 _: I( Y6 w
- for (i = 0; i < OUT; i++)
- $ L% D' v/ w( b2 [9 g1 K. t$ P for (j = 0; j < NEURON; j++)8 z$ [; Q7 j0 f( ?0 R
- {: {\" g6 I( U) @0 Z& T( \8 M
- Wbc[j] = rand()*2.0 / RAND_MAX - 1;% B7 F$ {/ a- e/ t$ @+ o7 V\" W7 c
- Wbc[j] /= 20;) v* @- |- V9 M1 J: f1 [
- }. }6 U+ z4 h% h3 m' U# ^
- / O) |- Y4 K) D' L9 p
- //找出每个向量最小最大值,并进行归一化
- 1 Q/ g: g0 G6 d. }) J0 D ^; k for (i = 0; i < IN; i++)
- 1 Q5 m+ y6 q' R9 I+ R6 a8 ? {
- 9 g& U* G7 A* E- D1 b
- 2 ~' o2 B4 x( X9 T0 t/ y MinIn = MaxIn = La[0];
- 7 a% n* c% D/ B; N: O for (j = 0; j < DATA; j++)
- % r. W' o9 t1 }/ Y/ G+ q8 J, e {, G4 n; t4 }) {$ `0 s% v\" u; E
- if (MinIn > La[j])
- 6 H$ y$ P, @- d! ^+ p- ~0 E Y# c MinIn = La[j];
- . t- u* i& @+ m; q( F if (MaxIn < La[j])5 Q) ~\" H- `3 e9 Z7 B h
- MaxIn = La[j];
- - V# F8 `' p n3 B }! d1 X\" T8 t2 u3 M/ J/ F W
-
- 4 k- f5 D% q$ P! P7 F j . U7 x5 f5 E\" G/ g
- }
- 2 a. H4 m+ S8 F
- $ m9 _1 E! L$ R% ~6 Z* w# m: i% o! l5 n for (i = 0; i < OUT; i++)) S/ q6 [0 |( X0 R) S4 |. T
- {
- , v( z7 `: @\" u( j6 Z , c! H% G. \0 A' A
- MinOut = MaxOut = Lc[0];
- # X7 G+ T+ Q9 G for (j = 0; j < DATA; j++)
- ! f0 v$ n4 P2 u\" p$ m {\" @7 S! e1 D1 V\" ]8 t' W; V+ U. c
- if (MinOut > Lc[j])
- 4 d5 S. n: ~! l0 I8 Y MinOut = Lc[j];
- ( R# ~1 F1 [# [8 n; G# d9 L if (MaxOut < Lc[j])
- 0 i& H m6 D1 v/ G+ R, E1 m MaxOut = Lc[j];. T8 J+ B2 i8 Z7 S( D2 x* ?
- }$ f9 a( M0 E- _% B) r2 V4 z8 e* S
-
- # X% v+ y7 w5 I4 B9 a4 m8 X, J, p4 x }
- # v6 A5 m& l; B! D$ Z; r1 Q! \
- ! S, M5 S$ A' F4 U6 z4 f //归一化
- \" _0 Y C# G- c. ?, ? for (i = 0; i < IN; i++)1 \' P3 z6 s+ }
- for (j = 0; j < DATA; j++)
- % R8 P0 |/ w ` La[j] = (La[j] - MinIn + 1) / (MaxIn - MinIn + 1);
- 1 k; W3 s2 `3 [# q2 v6 u . n8 C5 X4 p* Q& P- I
-
- 0 r# O. }8 X9 F: d* f for (i = 0; i < OUT; i++)( M$ Y) y. R0 [) C) z8 U: l\" _; M8 R
- for (j = 0; j < DATA; j++)* o& V4 u4 p2 F1 u. \9 e) N) k' l
- Lc[j] = (Lc[j] - MinOut + 1) / (MaxOut - MinOut + 1);( D% {: a' C! X* [( ^- X
- : W5 Z, W# L3 n0 r5 j\" L
- 2 @* Z- R( R' r
-
- 5 l9 X( i- U j: R}: W/ b3 a/ {4 P* N
- void getActiveVal(int dataIndex)$ c, c9 {% d0 t2 L% d7 G. g
- {+ q9 C5 a( f, s5 ~1 J0 q1 C, U
- int i, j;
- 0 q7 o8 q7 R- F% e3 c: l double sum;1 t8 e2 n: r f
- for (i = 0; i < NEURON; i++)
- ; P0 {+ ?6 W G3 Q4 y' f0 N1 g {1 j2 R9 |1 r: y* {+ d6 G
- sum = 0;
- , b\" O* c, o& z& f for (j = 0; j < IN; j++)
- . ~& t1 V; Y' V' e# W i sum += Wab[j] * La[dataIndex][j];2 D9 ?. ?6 U. m\" y7 L
- 9 A9 L0 I- b8 ^- G# s
- LbOut = Fx(sum);& q8 k8 j. j# o( y
-
- ; y- w. l5 y# ^% D2 Z }
- . w; H3 ?3 R7 w; B+ U8 a
- ' j3 Q) _1 X1 X2 j for (i = 0; i < OUT; i++)! p/ l- \* X- U2 Q% t8 Y8 n4 ?, ~
- {7 ?( H' y0 Z! f6 D% D
- sum = 0;
- 8 W- v\" p4 [: M% O ^# A k1 Y/ j for (j = 0; j < NEURON; j++)\" M0 x& b! Q- J1 Y& {
- sum += Wbc[j] * LbOut[j];
- . v/ v% T' n+ z% D9 f* g
- - t3 ^7 ^$ \% _6 Q LcOut = Fx(sum);
- # n1 R, G$ _2 m: |7 n4 N; j6 P8 b }
- \" N( z2 b+ P4 Y}# S0 a' A I( Q- ]+ h7 q- Y# a# b
- void backUp(int dataIndex)
- 9 H\" O; G5 Q5 l6 R$ Q{2 }' N% v0 d% }! Y5 \; c* r
- int i, j;
- 6 q, X* \6 ]\" c9 ^$ f0 `9 T double sum = 0;8 ]& u5 @) ^% O3 T) M$ _9 Z. T4 q
- //Lc层单元的一般化误差
- ; o: j$ C1 g3 @* P for (i = 0; i < OUT; i++)
- ! F$ R+ C! T3 }8 u n Dc = LcOut * (1 - LcOut)*(Lc[dataIndex] - LcOut);+ g# _ a E' S2 M% e9 V. w0 J' i
-
- 4 P( ?* k o3 O! ^ //Lb层单元的一般化误差
- 9 X. b\" o: D# j- k* r for (i = 0; i < NEURON; i++)* w4 _2 @1 [1 \5 y
- {
- 5 u B, }# w. L sum = 0;
- ; n( M0 u6 O' I$ A$ U! i- ~4 L for (j = 0; j < OUT; j++)
- 1 Z$ p0 R5 Y9 y! U% N {, y1 a. ?\" E: i. M) u% {
- sum += Wbc[j] * Dc[j];
- + U. v$ J! o+ c R }- T0 Q: P- W$ J. R8 Y) H* \1 r
- Db = LbOut * (1 - LbOut) * sum;1 t( b4 b. P. X* I3 X# s
- }! e: i. C7 o$ r9 k+ b
-
- . s/ Y7 l2 |# s7 k double beta1 = 0.08, beta2 = 0.1;+ ]! f' ^\" z+ R* ~$ K
-
- y/ V+ e/ F- Z# @' q for (i = 0; i < OUT; i++)' V: c& B# G1 X- E( s6 X0 |2 o
- for (j = 0; j < NEURON; j++)
- . w4 j4 K9 P8 ~6 G: a# l Wbc[j] += beta1*LbOut[j] * Dc;
- 0 _6 r3 p }, s# l- g3 ]1 W, D
- 2 r6 n% D' S\" K+ a, U for (i = 0; i < NEURON; i++)
- `! B2 |- i5 `\" ?! }1 l8 O$ a for (j = 0; j < IN; j++)
- 7 k# V' u, w, X7 @- ~. ?2 ^ Wab[j] += beta2*Db * La[dataIndex][j];
- 2 u# h' R! H4 d . f) f7 @+ F% R! I3 G8 O
- 6 e7 E; o\" v$ D8 x- H
- \" M+ ]! ?# t5 O
- }\" d0 p9 s; C2 [
- ) z% E\" z4 M0 t0 Q0 r5 Q5 A
- double result(double d1, double d2)% d, }' Z4 r\" e/ F! f( t
- {
- : |2 c* P\" }- U& N9 ~+ g: K int i, j;- M$ K' x3 v! ^3 m' w6 r
- double sum;
- $ ]' n! h7 Y1 S d1 = (d1 - MinIn[0] + 1) / (MaxIn[0] - MinIn[0] + 1);;: z. I, m: Z+ }4 E1 K) O
- d2 = (d2 - MinIn[1] + 1) / (MaxIn[1] - MinIn[1] + 1);
- 5 f9 Y. @9 M& F! k* {4 _% T# K
- ( q0 f; W& ~) S t2 I for (i = 0; i < NEURON; i++)% m6 a: ]- ~4 ]5 }3 U6 J# a
- {
- 7 {/ }0 |8 J& N. e& o* P9 ?- _ sum = 0;
- \" K4 c- i0 d: X3 `* G) D sum = Wab[0] * d1 + Wab[1] * d2 ;
- % L5 o& [! G- j6 A, o7 A8 h' H LbOut= Fx(sum);* [- x) V/ j0 r; I% `5 r7 ?
- }
- + I# F\" ]( J( _0 D# Z
- }\" {3 S+ G# G- ]1 c sum = 0;
- 9 z3 @. v6 \9 g; j for (j = 0; j < NEURON; j++) W: R: c1 {; h# _
- sum += Wbc[0][j] * LbOut[j];! B: f8 ?0 b- `# K* g\" T5 P
- f7 l u9 s) g1 p/ S6 J2 Q+ V
- LcOut[0] = Fx(sum);; c6 m: Y+ h$ Z7 n1 [\" |- C
-
- , S6 @1 c( ~7 a3 f return LcOut[0] * (MaxOut[0] - MinOut[0] + 1) + MinOut[0] + 1;2 e9 y0 R; C# ~; ?: f\" ^
- # I. `4 d/ I1 z s8 a$ n
- % Z9 i6 d3 Q3 O$ e5 o
- }/ H7 ^8 ^( \; i) C. _
- void train()$ V8 |+ t+ @. T- R# L
- {
- ; @' [8 G3 g$ C7 E+ X/ h int i, j, no = 0;1 I$ O# O' m9 i6 H' H8 [
- double e = 0;- Y' t' M7 q3 `\" x6 C q2 w
- do{
- - e8 C! l9 d ]1 u' M! U3 k2 | e = 0;+ i+ b7 J2 D8 ?; e8 F
- for (i = 0; i < DATA; i++)( r# ] i0 C% Y
- {& h1 B) i9 S3 {, W: g+ L
- getActiveVal(i);
- 0 d- u. t4 @+ s) Q. Y: u. i9 h backUp(i);
- : |' L, [7 ~ G2 ^0 G, r e += 0.5*pow((LcOut[0] - Lc[0]), 2);
- * e) ^( O9 K5 d }
- 5 _) n2 M& N; [; o ' B& Z8 D0 T: G3 K0 Z; s& y9 M$ V
- cout << no << " " << e << endl;
- ( f# S) h. l; I y; B) Z no++;6 M# E% |, U+ [0 o! n6 N
- } while (no < 1000);) a8 t4 Y\" B7 e2 \
- / w\" y$ z/ y( _
-
- . T. {' [& v* E}7 s* J3 r9 d\" ^( K- Z: ^% k( n: h3 J
- / P& A# s- }/ y( _. G& @2 q2 V
- void main(int argc, char const *argv[])5 Q2 v, ]! S4 T. @' z& M
- {
- & K6 t/ E% j& @
- 7 b) Y! A& e' W setSample();4 X4 X9 o7 M$ m
- initNet();
- 6 l. q1 u* B- P% y3 r: K. a) B train();
- 2 G- x% ?7 ?2 r: w double a, b;0 o/ C) L4 Q5 V9 o5 @% d) Y- Q
- while (1)
- . E7 f& F2 g C. { s( `3 n, H _ {7 L7 w% m: \4 @6 z: w; N9 e: w9 T+ Q
- cout << "print two numbers" << endl;, N3 r8 o. N% q% Z) e! i3 z
- cin >> a >> b;
- . g6 x) u: P, X; R% K2 N: Q) Z cout << "result:" << result(a, b) << endl;( |1 o4 X% }4 t* ^% t\" [3 t
- }% }$ D( L! V! L; H3 |; S
-
- - \1 e0 e9 t1 N( z2 s& d1 ?
- - k( v( k\" W3 z/ D! V}
# J: p9 y4 E: K" ^+ z
9 [# _" j1 r2 t |
zan
-
总评分: 体力 + 1
查看全部评分
|