|
21世纪物理的前景—当代科学的重大问题 5 t( b2 l0 m0 G+ p
* g5 J, G( _" k& o3 h h' P
●为什么我们要相信“对称”?我们生活的世界充满了不对称。这个矛盾怎么理解 2 V, Q( {4 [ K+ ?+ u
/ U: _& c0 m* F& J& X7 K8 {+ T1 m ●基本粒子中有6种轻子、6种夸克,为什么夸克不能单独存在
6 j5 L3 o* R( t3 u# J# O; z* X- U1 i
- X! `; r+ c/ G3 j0 O9 P ●宇宙中90%是暗物质,它的存在有什么根据
- u$ x5 ~( c0 i
+ M% y9 A$ w' C. { ●类星体发出的能量是太阳的1015倍,它如此巨大的能量从哪里来
. U; S& k2 K+ ~, ~
6 R$ u- t4 x1 t. t* i1 j 当代科学有哪些大的问题?因为大发展一定是从大问题上引发出来的。下面我提出四个问题,当然重要的问题比这四个多得多,不过今天我想就挑这四个问题讲一下。 % }# ]. s: U. k, i+ D& `8 o3 m
) l. c# T3 c5 j! V 第一个问题,我们了解宇宙界有三种作用:强作用,电弱作用,引力场。这三种作用都是基于对称的理论上的。可是实验不断地发现对称不守恒,这是很奇怪的。尤其是在50年代发现宇称不守恒以后,似乎理论应越来越不对称,但实际不然,理论越来越对称,可是实验越来越发现不对称,显然里面好像有一个错误,也许使人觉得是理论不行。 % o+ ^( s! n+ N0 K |$ G& L; ^
& v h+ |( m/ O
第二个问题,现在所知道基本粒子有6种轻子、6种夸克,但是夸克是不能单独存在的,夸克是看不见的,这也是很奇怪的。 ( ~; f. J1 ?* {$ ~+ G, T
/ t5 ]" `- }1 k0 q5 H 上述两个问题我觉得是当代物理学两个很大的问题。 % S% Z3 x9 {6 g! |% f
' j. Z" q7 [7 X 天体物理学也有两个大问题:第一个问题,整个宇宙至少90%以上(很可能99%以上)是暗物质,不是我们知道的物质。第二个问题是类星体,类星体的能量是太阳的1千万亿倍,我们刚才已经讲了,超新星的能量是太阳的100亿倍。可是,超新星仅有约一年的寿命,而类星体我们知道的一直还在发光,它的如此巨大的能量是从哪里来的?我们不知道。 0 K. Q; k8 [4 q
' K' f* V, _/ h! V
以上这四个问题,就是我们现在在物理学和天体物理学中不了解的四个重大的问题。 1 A' p5 `& V4 J6 K+ Q7 j1 Y; t: P
' h# K4 v; v% w i, i6 I9 n, Z$ S
我先讲一下“对称”跟“不对称”。为什么我们要相信“对称”?我们生活的世界充满了不对称。这个矛盾怎么理解?有一种理解方法,就是最多的“非对称”的可能性是跟完全的“对称”是一样的,就是完全的“对称”会产生最多的“非对称”。这个提法,看起来好像是矛盾的。我先解释为什么它不但不矛盾,很可能我们的宇宙就是这样的。我想用一个比较简单的例子来作解释,这个例子就是棍子的弯曲。(图1)关于棍子的两端受力而弯曲的计算公式,早在300多年以前就由欧勒作出解了。找来一根棍子,两端沿轴线加以压力,当压力小时,棍子就被压缩,压力增大,超过一个极限,它就弯了,这个极限是由欧勒方程式定的,这个弯曲现象是大家都知道的。 6 F; ~. j [) e' d' u
/ h/ ]7 ~! w7 } z 怎样用这个例子在解释“对称”和“非对称”的关系呢?请先看这个棍子的截面,假如截面是圆的,那当然很对称了,棍子弯的话,它向各个方向都可以弯,这是大家都清楚的。圆是最完全对称,可是棍子每一个弯曲都是不对称的,而圆棍子可能弯曲的方向是无穷多的。圆是表示最对称的了,也就是说圆的棍子弯曲时,它可以向任何一方向弯,它有无穷多的弯曲的方向。假如这根棍子的截面是个长方形的,它只有两个方向可以弯曲;如果是半月形截面,那只有一个方向可以弯。所以非对称的可能性是跟本质的对称有密切关系的,本质越对称,非对称的可能现象就越来越多,因而对称和非对称可以联系起来。再进一步讨论,假如现在已经是非对称了,棍子已经弯了。我们怎么才能知道这根棍子的截面可能是对称的呢?我们不把它切开来,怎能知道它的截面是不是圆的? . v/ @7 E* X$ B* U* t8 j
+ G5 Y+ G A) M `
假如这根棍子的截面是圆的话,它可以向这个方向弯,也可以向那个方向弯,这样弯与那样弯的能量是一样的,所以假如它的截面是圆的话,你可以把这个棍子推一下,它可以转变到另外的方向,这是不需要能量的,这可以测量。第一,我们说,对称的圆棍子能产生最多的不对称、弯曲的可能性,而且不同的不对称的弯曲方向可以通过转动连起来的,所以就是在不对称的位置,你测量怎样把它激发到附近的态,有没有不需要能量就可以激发的态,假如有的话,那就可以知道截面的形状了。虽然已经不对称了,可是它的截面是圆的,这显然不同的不对称态是同一个能量级的。所以可以把这些能级归到一个新的能带,这个我们叫作戈德斯通-南部玻色子,所以在不对称的形态下我们还可以推出来本来是否是对称的。
" @: s; V: \4 _- `/ q; Q ( P' l, F/ s% n$ L
那么,粒子物理对于我们有什么意义呢?粒子物理不是棍子,什么态相似于那个棍子呢?那是真空。我们日常直接感觉的真空的物理定义也许应该是对称的,可是物理的世界是不对称的,物理的真空很可能也是不对称的。真空不对称也就解释了当前的几个重大问题、几个大谜。就是说,为什么我们的理论是对称的,我们的实验却不对称。它的道理是这样的:基本粒子并不代表所有的宇宙,基本粒子是在物理的真空界之内的,物理真空很可能是不对称的,它是可以激发的。什么是物理的真空?真空是一个态,是没有物质的态,所以叫真空。可是,因为作用是可以通过真空的,所以真空的能量可以有涨落;真空可以很复杂,它也可以有相变,可是它是洛伦兹不变的,所以它不是以太。等会儿我讨论,怎样把真空激发起来。真空像超导体,可以有相变。真空很复杂,也许可以破坏CP(正负粒子的对称与左右的对称)守恒、与时间对过去跟未来的对称性。怎样才能研究激发真空呢?现在激发真空在物理上是相当大的一个重头研究对象,在美国布鲁克海文国家实验室刚刚完成的相对论性重离子对撞机(RHIC)就是要用来激发真空的。RHIC是英文词头缩略语,其中R是Relativis?tic,H是Heavy,I是Ion,C是Collider。10月1日我在北京参加国庆后回到美国就去参加10月4日庆祝RHIC的建成。这台加速器投资10亿美元,它能够把金的每个核子的能量提高到1千亿电子伏,整个金核的能量达到20万亿电子伏。它的目的是让两个高能量金核对撞。由于能量很高,可以互相穿透过去而分离,但是把相互穿透的空间的真空改变了,这种改变可以延续一个短的时间,我们可以研究真空在这短时期中是怎样改变的(图2)。我们预测在这个真空里面夸克可以自由出来,而其背景的真空态可以凝聚。今天我也没有时间仔细讲,不过这是很热门的问题。RHIC对撞机刚刚建成,明年就开始做试验,探测器都已经完成了。要研究真空怎么改变,而且真空在每个地方都有的。假如我们能够把真空改造的话,很可能我们也会了解一些有关当初宇宙开始的时候是怎么样的,这就联系到下面要讲的,就是21世纪物理学的前景。
6 P1 w3 G7 l, t" y5 p( i- }7 ^
6 @1 h- K1 b, ]! n J 要了解21世纪物理学的前景,就是要面向我们现在的几个重要问题,其中之一就是为什么夸克不能单独存在?我们认为主因是真空,是跟超导体相似的,是我们现在的真空把夸克禁闭起来了。怎样把真空改变呢?可以在2000年开始做这个改造真空的试验。
7 A. ?4 O* ~" P8 |: g" ?
7 B/ _: v5 Z/ J2 o! ]2 B 我刚才又说了,另外有两个问题,一个是暗物质,暗物质的存在有什么根据呢?现在我重点讲一下。我们随便看一个星系,它的直径大约为20千秒差距(Kiloparsec)。在星系的周边,随便哪个星,哪个灰尘或者气体云,都各以某一速度运动,离心力是速度的平方除以那一物体离中心的距离r,这个离心力应跟引力相平衡,引力是牛顿常数跟星云里的质量相乘,除以r的平方。所以量这个速度,如果你已知它离星云中心的距离r,就可以算出在这个星云里面有多少物质存在。以星系NGC3192为例(图3),这个NGC3192星系发光的区域长约15千秒差距,但是到距离中心30千伯色处,星的速度还在增加,这表示除了看得见的物质外还有绝大多数看不见的物质。看得见是什么意思呢?除了眼睛看得见,也包括用电磁波、红外光可以测量。看不见的暗物质不放可见光、红外光或电磁波,但它也有万有引力。由于暗物质的存在,远离星系中心的物质的速度不随距离的增大而减少。这种现象不是个别的,对所有测量过的967个星系,所有测量结果都是这样的,没有一个例外。就是说所有的星系里面绝大多数的物质都是暗物质,暗物质有引力,跟我们熟悉的看得见的物质一样,但其他性质完全不一样,不是我们熟悉的物质,我们熟悉的物质在宇宙中是少数。
3 R1 K2 U0 o/ I' P3 G u. U$ u
* v K9 ]0 ~. { t* Y# Q/ n 我们再看类星体,它发出的能量是太阳能的1015倍,是什么能量呢?我们不知道。举一个类星体的例子。最早在1961年发现的类星体3C273的能量是太阳能的1015倍,在1982年2月,一天之中它的能量增加一倍。现在我们知道像这样的类星体大概有100万个,它们的能量来自何处,我们完全不知道。暗物质是什么物质我们不知道;类星体的能源我们不知道。由于在我们的宇宙里面充满了我们还没有了解的东西,所以要年轻一代去研究,去深入了解。 % Y3 ^, S& G+ w% S
+ x5 b0 W. p( L& L. y, s. {: e8 q 现在总结一下,20世纪的物理学发展,可以简单地说,它是着重了简化、归纳。另外,我们相信找到最基本的粒子,就会了解大物质的构造。这个方向使我们得到了高度的成功。可是,到20世纪中叶我们发现,不是光知道了基本粒子就能完全了解整个宇宙的大问题:对称与不对称的矛盾、看不见的夸克、暗物质、类星体,这些都是在基本粒子之外的。我猜21世纪的方向要整体统一,微观的基本粒子要跟宏观的真空构造、大型的量子态都结合起来,这个很可能是21世纪的研究目标。 / [$ D5 w; I# K& N
/ b7 ]& P. l! I 讲到物理学的成功,因为物理学所处理的对象比生物学的要单纯一点,所以我们容易集中目标。物理研究有一套手法,这一套手法是很强的计算的精密度、理论的预测、试验的观测。它们都应满足高度的精密要求,就是杜甫的“细”、“推”。物理学的应用常具广泛的发展,像计算机的因特网上常用的万维网(WWW)和超文本(HTML),就是由研究高能物理的西欧核子中心的研究人员为了交换实验数据而发明的,现在已经用到大家日常生活上去了。物理学也影响生物学,在50年代克里克和沃森研究DNA的分子结构,后来基因研究大发展,也是沿了20世纪物理学的简化、归纳方向而展开的。
( g8 S, b6 Z( j" z8 c7 W 5 n* q c+ M$ F% \
物理学跟生物学以及其他科学有极密切的关系,20世纪的时候物理学和生物学相辅相成发展,我相信21世纪也是同样的。生物学中不光是基因很重要,也要了解什么是生命,这也是整体的。物理学跟生物学的合作又可以更进一步地发展21世纪的文化,也产生21世纪新的应用。当然,在20世纪的我们很难猜测出21世纪将是怎么样的,就像在19世纪也很难猜出20世纪是怎么样的。不过20世纪的科学文化与19世纪的重大问题是有密切关系的;同样,21世纪的文化也跟我们现在知道的一些重大问题会有密切关系。(摘自《百年科技回顾与展望》(上海教育出版社)一书中,李政道的“物理学的挑战”第三部分。) ' w1 c' k% b, j0 l1 w
[此贴子已经被作者于2005-3-12 20:44:09编辑过] |