QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 3729|回复: 2
打印 上一主题 下一主题

七桥问题和一笔画

[复制链接]
字体大小: 正常 放大
zxl_lucky        

15

主题

2

听众

66

积分

小木屋

升级  64.21%

该用户从未签到

新人进步奖

跳转到指定楼层
1#
发表于 2005-8-25 15:22 |只看该作者 |正序浏览
|招呼Ta 关注Ta
/ j5 y2 _# y$ c) o* n. V4 j# f4 N! h* W/ Y! O6 C; |8 i: Z+ K" Z9 k4 S3 V; J: O% R- I0 |: K+ W8 f8 e4 T7 L8 A t! v |; g! {& q7 O. d4 K2 s5 C y0 t# @ p/ ]3 j `7 `% Z. \0 C& g! ~2 {* N9 N- ]; C' a. y/ F& ?( g3 ?( X l2 p# V2 y4 R( U( V4 f: A; D
七桥问题和一笔画
7 A) y8 t' |4 F) W / i. z+ c" a4 G7 J; l" `- ^3 t; V8 E' ]* }# ?: N/ c; q5 [8 g4 D& c
18世纪时,欧洲有一个风景秀丽的小城哥尼斯堡,那里有七座桥。如图1所示:河中的小岛A与河的左岸B、右岸C各有两座桥相连结,河中两支流间的陆地D与A、B、C各有一座桥相连结。当时哥尼斯堡的居民中流传着一道难题:一个人怎样才能一次走遍七座桥,每座桥只走过一次,最后回到出发点?大家都试图找出问题的答案,但是谁也解决不了这个问题。


图 1 图 2


  七桥问题引起了著名数学家欧拉(1707—1783)的关注。他把具体七桥布局化归为图2所示的简单图形,于是,七桥问题就变成一个一笔画问题:怎样才能从A、B、C、D中的某一点出发,一笔画出这个简单图形(即笔不离开纸,而且a、b、c、d、e、f、g各条线只画一次不准重复),并且最后返回起点?欧拉经过研究得出的结论是:图2是不能一笔画出的图形。这就是说,七桥问题是无解的。这个结论是如何产生呢?请看下面的分析。

  如果我们从某点出发,一笔画出了某个图形,到某一点终止,那么除起点和终点外,画笔每经过一个点一次,总有画进该点的一条线和画出该点的一条线,因此就有两条线与该点相连结。如果画笔经过一个n次,那么就有2n条线与该点相连结。因此,这个图形中除起点与终点外的各点,都与偶数条线相连。如果起点和终点重合,那么这个点也与偶数条线相连;如果起点和终点是不同的两个点,那么这两个点部是与奇数条线相连的点。综上所述,一笔画出的图形中的各点或者都是与偶数条线相连的点,或者其中只有两个点与奇数条线相连。

  图2中的A点与5条线相连结,B、C、D各点各与3条线相连结,图中有4个与奇数条线相连的点,所以不论是否要求起点与终点重合,都不能一笔画出这个图形。

  1736年,欧拉在圣彼得堡科学院作了一次学术报告。在报告中,他证明了上述结论。后来他又给出了鉴别任一图形能否一笔画出的准则,即欧拉定理。为了介绍这个定理,我们先来看下面的预备知识:

  由有限条线组成的图形叫做网络,其中每条线都要求有两个不同的端点。这些线叫做网络的弧,弧的端点叫做网络的顶点。例如,图2是一个网络,a、b、c、d、e、f、g是它的7条弧,A、B、C、D是它的四个顶点。

  网络中互相衔结的一串弧叫做一条路。如果网络中任意两个顶点都可以用一条路连结起来,那么就称这个网络为连通的;否则称为不连通的。例如,图2是连通的网络;图3是不连通的网络,其中有的顶点(例如A与D)之间没有路线连结。


图 3 图 4


  网络中以某顶点为端点的弧的条数,叫做该顶点的叉数。叉数是奇数的顶点叫做奇顶点,叉数是偶数的顶点叫做偶顶点。

  下面介绍欧拉定理。

  欧拉定理 如果一个网络是连通的并且奇顶点的个数等于0或2,那么它可以一笔画出;否则它不可以一笔画出。

  用欧拉定理可以很方便地判断一个简单图形是否可以一笔画出。例如,图3是不连通网络,它不能一笔画出(尽管它的奇顶点个数为0);图4中实线所示图形有8个奇顶点.它不能一笔画出,如果将图中虚线补为实线,那么奇顶点只有F和G两个,所得图形就能一笔画出了(以F为起点,G为终点;或G为起点,F为终点)。

  试问下列图形能否一笔画出?如能画出应怎样画?如不能画出理由是什么?
帖子相关图片:
zan
转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
dixia        

0

主题

2

听众

56

积分

升级  53.68%

该用户从未签到

新人进步奖

回复

使用道具 举报

1

主题

2

听众

33

积分

升级  29.47%

该用户从未签到

新人进步奖

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册地址

qq
收缩
  • 电话咨询

  • 04714969085
fastpost

关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

手机版|Archiver| |繁體中文 手机客户端  

蒙公网安备 15010502000194号

Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

GMT+8, 2025-8-23 01:42 , Processed in 0.611104 second(s), 64 queries .

回顶部