Group 6 r0 @4 `8 r$ `
A group is defined as a finite or infinite set of Operands" i3 \8 I! x, ]
(called ``elements'') , , , ... that may be combined or ``multiplied'' via a Binary Operator 5 a$ h/ J2 i: m& h0 d! d6 V, r to form well-defined products and which furthermore satisfy the following conditions: : e' ^* f: V. [1 u. J" }0 E* F( q# H1. Closure: If and are two elements in , then the product is also in . , R2 M4 \7 x. `; e1 f- s& \1 z( R2. Associativity: The defined multiplication is associative, i.e., for all , . 5 \; m) ^+ p% D2 N3. Identity: There is an Identity Element 1 R" y I+ M/ H: Y, Q( g; R# h5 q$ N (a.k.a. , , or ) such that for every element . 1 X" u. f$ m# S
4. Inverse: There must be an inverse or reciprocal of each element. Therefore, the set must contain an element such that for each element of . # z! v% g6 ?/ U4 OA group is therefore a Monoid 7 o; H; L& \0 }- K) K, f for which every element is invertible. A group must contain at least one element. ; N4 W3 N& B) M) U/ l : D7 c. x! s5 q" R. s; ]
The study of groups is known as Group Theory) j9 ^9 L6 j4 D* c- V
. If there are a finite number of elements, the group is called a Finite Group 9 T9 b. c" k2 w$ y! V and the number of elements is called the Order* }' H7 B# S: g4 Z
of the group. 6 T: x4 c% y# q& c- l
; ?3 [+ i W' _4 G U
Since each element , , , ..., , and is a member of the group, group property 1 requires that the product ; @; ~$ _* I: s) f$ {6 G
( `5 B0 Q, s3 p1 a! ^/ |
(1) & c( F; E3 K+ n% m, T1 s& ^
; L5 p, z9 R" f) M4 x ]) y; `8 O( y9 [: f
& N. Q! S0 L/ }4 [1 Kmust also be a member. Now apply to , % a- Z) s1 S J# l, j/ a
% `/ j+ m6 c* b" y* G
& A) ^/ P. R: p1 @! i
(2)* w, y. @$ F Y' C! w( G( j- E4 ]* U
5 t4 }2 U& x" G: V0 C& m
% B( ]$ T2 c2 Y! ?5 y& l- i7 H
) m; {1 W% X) {; A
But # A+ g; F3 K% C; Z
2 a1 n0 v. V S5 W! b1 p
) ^) d5 o7 B; b, s- h( P+ Z; ?$ N
9 L+ c0 `2 p; h
, b$ p$ e% }/ f( M
: N7 K/ ?% B" W* h' \
(3) , s1 A: R8 w6 F. j# Q1 S
so " m2 {6 {5 ~3 p$ m! ^; B
2 w( F. s; _% G5 ~( Y, {
(4) 8 ^( w- h( D2 N5 l' J6 y
: Z# V; \( t6 W
2 Z9 ^6 I q9 ]: Q# K ( S# d+ n! o. v6 I B7 qwhich means that * Y9 K( N7 j5 Y1 c0 t6 z; W
0 S1 C$ g( V, o9 {+ C
(5) ! c. o5 D \! U" t2 m! w& w
/ l0 U+ r5 T$ X1 p/ t/ c) e/ t3 K8 f
! t- L0 Z8 `; g# o2 Qand 6 b/ p2 K: s% D+ c3 Z
& t: }* ~8 \, _& j* \& ]
(6)+ `( x7 m9 R! S! v8 e, Z. l
0 Q) r- _' C' a; i5 I- e+ |* i: K$ q3 @/ K3 a$ o& K
+ c2 H C, }$ ~