QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 2812|回复: 9
打印 上一主题 下一主题

虚二次域例两(-5/50)

[复制链接]
字体大小: 正常 放大
lilianjie        

43

主题

4

听众

204

积分

升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    跳转到指定楼层
    1#
    发表于 2012-1-4 17:41 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    本帖最后由 lilianjie 于 2012-1-4 17:54 编辑
    3 I' Q6 v4 g4 k4 r$ I( p9 I4 A
    " A7 l/ Z+ N, z- O$ X' N5 `Q5:=QuadraticField(-5) ;
    ! ?) d: \4 J- UQ5;
    - Q- O0 b: ~0 e5 `" Z5 z1 |, t
    0 _) x' l+ X$ V( ]. @! RQ<w> :=PolynomialRing(Q5);Q;
    ! J1 w. x% B5 t+ J( F1 S2 _EquationOrder(Q5);7 {( b. b5 f8 q/ q1 |& k
    M:=MaximalOrder(Q5) ;
    . [, }+ Q$ @+ u% XM;, c' Z" I8 N: e2 w$ N# W
    NumberField(M);& a  A5 z! R$ G" M
    S1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;) q- g& I1 k; a
    IsQuadratic(Q5);" s" k- |, A+ }/ P
    IsQuadratic(S1);
    4 x5 D* b4 `+ C+ L/ |+ @IsQuadratic(S4);0 R0 u) V$ K" h* d. y
    IsQuadratic(S25);
    9 Z5 i' y% e+ [2 AIsQuadratic(S625888888);
    . X# Q5 {9 P- @+ u4 X) a7 pFactorization(w^2+5);  8 K$ s, p% {# u6 F: Z
    Discriminant(Q5) ;( y; W6 X4 D( A+ M0 a3 n8 h
    FundamentalUnit(Q5) ;# E1 B3 P5 C' _- x+ J
    FundamentalUnit(M);0 ~. ?) L: t0 z
    Conductor(Q5) ;
    " Y0 W6 j) ~- f$ G( [" ]
    / M4 I, J1 P/ v! |3 T) Z) p# eName(M, -5);. ?* ]: D' x* n
    Conductor(M);
    ( k/ d$ k  u: ~, h. ^ClassGroup(Q5) ; : ]3 ^' b+ `2 I) T1 s5 m
    ClassGroup(M);; [# w' L3 h8 ]
    ClassNumber(Q5) ;
    0 n8 t( J. |% |! h! S1 {- V7 n; CClassNumber(M) ;
    - ~! j" j/ I) X1 g$ PPicardGroup(M) ;
    + p; d4 ?1 t1 ]* g9 X6 QPicardNumber(M) ;4 F3 V% C+ v$ y/ b
    , M. d7 n! P: E' p5 ]) p4 K9 O9 V
    QuadraticClassGroupTwoPart(Q5);
    1 z- [; z1 G: `. ?; P, g  w2 OQuadraticClassGroupTwoPart(M);- M4 H( J6 w/ Q0 A7 M7 Y
    NormEquation(Q5, -5) ;9 D0 n' k" R: j$ F+ e* b% X9 [
    NormEquation(M, -5) ;' j& X" P7 p7 g: p/ V- _
    Quadratic Field with defining polynomial $.1^2 + 5 over the Rational Field
    + ^, |' P% Q$ s" K+ ^Univariate Polynomial Ring in w over Q51 p% j% W% _. S; t5 B, a$ v" v
    Equation Order of conductor 1 in Q5  t* h" D: U3 R
    Maximal Equation Order of Q5
    0 N! x7 v, Z6 fQuadratic Field with defining polynomial $.1^2 + 5 over the Rational Field
    ' X6 y$ {; v( j0 x  p' b$ FOrder of conductor 625888888 in Q5
    + V% {% }; N% T$ o) M* P: `true Quadratic Field with defining polynomial $.1^2 + 5 over the Rational Field
    6 ~) ]- ^3 H/ N5 Utrue Maximal Equation Order of Q5
      Y  _& t4 D; S! d, [7 x( [' T4 R& Ztrue Order of conductor 1 in Q59 U. M( r& ~9 `0 B! g/ m
    true Order of conductor 1 in Q5: I& A5 h( w2 W& m
    true Order of conductor 1 in Q59 M6 u0 `* l0 W1 e* r) A6 {5 J
    [9 V. q7 n: Q1 {2 {5 H) K
        <w - Q5.1, 1>,
    - B& K# {$ U+ C9 K. I2 V    <w + Q5.1, 1>* m3 M% R5 {8 V* l
    ]
    ; ?7 O( A) K& s) Q8 _/ B' M-20
    + j+ V! H1 m! P" J+ n6 r( u$ |" j- }" G7 \7 p9 \+ ~
    >> FundamentalUnit(Q5) ;
    6 F" O, t9 ]2 Z9 Q                  ^& }& f5 G9 S2 z0 x  b/ I
    Runtime error in 'FundamentalUnit': Field must have positive discriminant* v- C& _* g3 F5 d  E& ?
    : F1 K% j( Q9 }; R- H2 O
    ) U* V0 p% l1 N
    >> FundamentalUnit(M);
    $ y; Z$ I* r3 v9 E7 a                  ^$ ]! ^, e7 k4 M3 C2 c$ [
    Runtime error in 'FundamentalUnit': Field must have positive discriminant1 s8 }& ^7 ]& b

    & ~& G4 j! T* m: ^9 x" _20! N5 B4 J" E( L- R/ G. V

    8 V7 e! p$ G: D' y  j1 z  `>> Name(M, -5);
    + p0 S. [) j* A/ ]4 z/ m       ^8 f# {! ?+ H4 Q& e1 c+ V
    Runtime error in 'Name': Argument 2 (-5) should be in the range [1 .. 1]- i8 C$ E2 f4 i  }) n
    $ {) y6 T3 R- W2 a& ~) X' L
    1  x2 M- p6 T+ f2 r! ?
    Abelian Group isomorphic to Z/2
    % r! r& A8 f) U+ h* J& G2 SDefined on 1 generator
    3 I' ]; @1 ~' w. R; \Relations:
    % O5 A/ `* u% d& P0 X! Y9 X2 h. x/ z    2*$.1 = 05 h5 E- m/ ~5 u: ^9 W& X
    Mapping from: Abelian Group isomorphic to Z/2
    0 W7 ^+ v$ A, @' G+ W6 X+ x; _Defined on 1 generator; ?# B, _1 U/ C6 B$ V
    Relations:$ s7 g9 O% T' I) k3 K4 t
        2*$.1 = 0 to Set of ideals of M7 ~) B4 K: W! s5 H% V; S- R
    Abelian Group isomorphic to Z/20 D7 N% C/ n# o8 v- P
    Defined on 1 generator
    ) q2 j( U9 R3 r& X8 }" MRelations:; w" I- x% T+ a( C
        2*$.1 = 02 L, o& f+ @" ]
    Mapping from: Abelian Group isomorphic to Z/2
    9 i/ `3 l6 b6 s8 f: WDefined on 1 generator
    8 T5 r) O- O2 ^5 X0 O4 o; `Relations:) |% t% x! I$ Q' H- q
        2*$.1 = 0 to Set of ideals of M
    + X! k5 Z% ~. o7 c) J2 c2
    & [4 ?! h- O. f8 I5 Z29 u2 v# }6 ]1 F
    Abelian Group isomorphic to Z/2
    - F# M& j; F. e' `8 Q9 H- pDefined on 1 generator
    2 B& A% w1 I. N  p2 D) |, @6 wRelations:
    , B( B) z  P& W& w    2*$.1 = 0
    ' z6 n& }5 x: r) k9 `) tMapping from: Abelian Group isomorphic to Z/26 I5 Y- g/ @- Y- G0 ]
    Defined on 1 generator* Q' y8 z1 V9 Q
    Relations:1 @  ~) l- B; U$ ^* t
        2*$.1 = 0 to Set of ideals of M given by a rule [no inverse]
    ) h1 }4 M* x& r- V" }' c2- ]" E; L/ S# {1 N* ~$ k) b
    Abelian Group isomorphic to Z/27 S4 C1 q; p1 X, {6 R* }( }
    Defined on 1 generator
    7 L0 e; H$ F; ^: [2 J4 }* RRelations:
    4 {2 G. c, T: l  h/ Y+ F    2*$.1 = 0
    & x# c7 G, i5 ^Mapping from: Abelian Group isomorphic to Z/2
    % B/ i+ X; C- ^Defined on 1 generator
    - v7 ]. q2 J1 K) QRelations:
    9 E* X: ]* q/ v- X    2*$.1 = 0 to Binary quadratic forms of discriminant -20 given by a rule [no
    9 T+ ?2 M; O; e! N; J5 xinverse]
    " z, E" w' F% S( [Abelian Group isomorphic to Z/2* h9 T4 D  E. |6 R3 H- E6 C
    Defined on 1 generator8 P$ Z5 S7 ~# r( F
    Relations:
    9 Y& B. s( y" L- L3 v    2*$.1 = 0
    + j6 r( s; K! a4 u6 r! T- oMapping from: Abelian Group isomorphic to Z/2
    9 q. h% z  A; o1 M( BDefined on 1 generator
    # @5 [+ A3 q2 f. x& B2 P& @5 `/ kRelations:) m" {% @+ f+ x' |9 c  `0 U
        2*$.1 = 0 to Binary quadratic forms of discriminant -20 given by a rule [no * K/ X1 {7 ^, k: W
    inverse]
    - t4 d& d1 r- r/ dfalse
    : q/ N- I+ l- i) Efalse, |$ y! \5 _' `1 X2 t; [4 p' M
    ==============% S3 R8 f: T7 m- M' \9 u# S

    + n0 B( f$ e8 D2 y2 B' Y( ?3 l1 p* L! m: G. _( @' X; D
    Q5:=QuadraticField(-50) ;
    3 X* O% s; r0 gQ5;, Q5 b: E- Y9 f) M" H
    ) V/ j8 m6 A  l7 V  R3 E5 m  k8 O5 [# I
    Q<w> :=PolynomialRing(Q5);Q;/ ?: ^5 [2 X; M  z+ b: Z
    EquationOrder(Q5);
    7 x4 P6 _# }3 H% S  }$ zM:=MaximalOrder(Q5) ;
    7 G  Q  k5 I: l  u) |$ w% {# SM;- t7 k: b+ {" e4 O8 x# n
    NumberField(M);* F6 x- F* T) Q5 P
    S1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;
    4 Q$ @  w0 T2 |( RIsQuadratic(Q5);
    ( r/ ^5 A; j# W+ nIsQuadratic(S1);% e9 |. k0 d& ~
    IsQuadratic(S4);
    2 _% y3 i; |; y2 bIsQuadratic(S25);
    - d" |  Q3 k7 @4 q% J; SIsQuadratic(S625888888);  ]7 K  J, G3 X1 U  P
    Factorization(w^2+50);  & ]& ]" a3 n+ N9 k
    Discriminant(Q5) ;
    5 z( {( C7 O1 o6 p2 uFundamentalUnit(Q5) ;5 k: n  K  ^  A) m+ C; I, c
    FundamentalUnit(M);
      }- T4 r& w1 q$ R7 a* TConductor(Q5) ;
    1 z0 M" Z0 [* r0 z+ C
    " T' W! n4 X% [0 Q" SName(M, -50);' ?, y- P3 ~- B
    Conductor(M);
    : T" D2 X6 o" x' sClassGroup(Q5) ; # v4 N1 i# P8 r6 y3 x; V
    ClassGroup(M);
    # ~' K6 \* J. W+ r# Q  s6 mClassNumber(Q5) ;$ u+ z, a" g6 ~) B
    ClassNumber(M) ;6 H" M6 _* [& _) `+ X
    PicardGroup(M) ;. c; b# V9 H0 u/ r0 X
    PicardNumber(M) ;
    # H4 \# m# v# Y/ i% z3 S+ y8 r
    ; g. |+ A7 m, h( aQuadraticClassGroupTwoPart(Q5);
    8 D% t: B- [+ H" m6 j: v$ _QuadraticClassGroupTwoPart(M);( j/ n" m& R! N4 m7 n3 k0 }
    NormEquation(Q5, -50) ;
    3 w, z, x) ]9 L$ U3 V, F8 _! s- iNormEquation(M, -50) ;
    - M* m- D- b8 p
    0 Q% s0 \1 S- f5 _, Z% _7 nQuadratic Field with defining polynomial $.1^2 + 2 over the Rational Field
    # g/ _+ `# i, y- m$ XUnivariate Polynomial Ring in w over Q5
    2 c& j: M8 z5 \6 x, N( vEquation Order of conductor 1 in Q5
    ( x0 P5 `6 a- s+ @7 `+ f$ }9 VMaximal Equation Order of Q5- g( M% V' z7 G, e
    Quadratic Field with defining polynomial $.1^2 + 2 over the Rational Field
    % G# c4 O* i/ D  S/ Q$ z+ }( U: DOrder of conductor 625888888 in Q5
    3 Z7 R$ c. g' ytrue Quadratic Field with defining polynomial $.1^2 + 2 over the Rational Field
      P, e+ d" g% O% e& o, b4 Q! w+ Wtrue Maximal Equation Order of Q5
    0 E4 j9 D; O1 wtrue Order of conductor 1 in Q5* ^. f5 L5 q3 z
    true Order of conductor 1 in Q5
    & T3 n0 V( \9 j( Q% [true Order of conductor 1 in Q52 I1 ]5 H+ T' L- @* D% N
    [& I( z4 U( Q6 A, L8 I# ]
        <w - 5*Q5.1, 1>,& ?5 R% C8 r9 w7 C
        <w + 5*Q5.1, 1>
    8 c4 b, \+ L! }8 E, T5 B( Y]
    3 u. U4 E. H3 E/ L4 U- l-83 i8 P  ?! ]* x# R4 W7 j: c  k5 p
    6 H5 @4 i# m" J0 D7 Q# u3 r# g1 K
    >> FundamentalUnit(Q5) ;( `& b+ M& ~3 e' I. ~  O
                      ^2 l& y, L& L+ ^  Y
    Runtime error in 'FundamentalUnit': Field must have positive discriminant
    - ^$ e/ A$ V9 v, r* G7 Y& p+ A7 B) l
    - C9 P8 p1 j7 F) Z
      r) l; p: c3 T$ i>> FundamentalUnit(M);1 ^" z/ j! S0 r+ E
                      ^. Z) p- ~3 F2 R2 |
    Runtime error in 'FundamentalUnit': Field must have positive discriminant
    7 `0 I1 W7 S% o
    2 I' ]  @' T% `$ i4 W( e88 k9 [! J- ]/ P" C9 G# y3 G2 T
    . z  z6 O7 C+ N4 u
    >> Name(M, -50);
    1 z1 b7 X' |7 p5 J       ^. J9 h6 X3 f3 s4 F7 S  @
    Runtime error in 'Name': Argument 2 (-50) should be in the range [1 .. 1]
    ! n6 v: Q, N  C& o6 V, s$ h% o8 ]! P5 [) K; r
    1
    3 Z8 E/ T+ I5 j5 L  |' G% ?. @Abelian Group of order 1
    . H4 C7 g/ K! r2 s7 r: r$ D2 F, bMapping from: Abelian Group of order 1 to Set of ideals of M, m" T0 A; z' _8 h+ R
    Abelian Group of order 1( Q0 l$ F# P; Y
    Mapping from: Abelian Group of order 1 to Set of ideals of M! T( F5 b6 N- A
    1* p6 `5 J+ x; c5 M6 U
    1
    ' w. q) C! i- e# E3 r, S# u$ GAbelian Group of order 1
    / ]# v/ z1 n* |) W0 O/ NMapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no
    , C3 X! \0 o5 P! L7 pinverse]& g9 |9 u9 E2 I6 ~, f+ T5 O2 q! Y
    1
    & O/ h( \$ l, S+ z' D( }: |Abelian Group of order 1
    ( f+ z, G: @" G8 K' j% l& w1 bMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant
    # s6 e  m7 F  Y8 C; i  V-8 given by a rule [no inverse]" |$ m: Y; F% p$ \, r
    Abelian Group of order 1& L/ _4 i+ ?- g, s# }: O' h9 l% w
    Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant6 P* R7 G* @7 K- O& Y% i
    -8 given by a rule [no inverse]
    9 S8 N3 r1 \; }: F. bfalse
    * P: |2 }- X5 e! C2 `& f) ^false) I6 k" l2 O0 L; u
    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    看看-1.-3的两种:  t  p! g. v3 B  |% [( o

    8 \" p, j& U7 C' ~3 Q; z( LQ5:=QuadraticField(-1) ;
    ! T% ~. t! s: R) `* yQ5;& M+ r1 E% q8 i9 Z4 x( {
    $ p8 q' r% V7 K8 y' k
    Q<w> :=PolynomialRing(Q5);Q;
    2 e: ~. P* {1 z& y: dEquationOrder(Q5);
    / ]- O5 g, e# ~M:=MaximalOrder(Q5) ;+ d# s8 `/ ?/ t% k# n  [9 B- r/ |
    M;" ^, s3 m  W8 V1 Y, y1 l
    NumberField(M);
    " A, Y3 G- w1 a' p8 nS1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;
    3 f% }2 p* v( {IsQuadratic(Q5);4 M  n' w$ j" G' h1 K. y
    IsQuadratic(S1);
    ) o$ m- I) Z, e! QIsQuadratic(S4);
    4 O$ `7 V1 x: Y/ PIsQuadratic(S25);, ~  |2 t! K/ f) n
    IsQuadratic(S625888888);
    $ q: A2 ?- j& C4 K7 b6 W1 oFactorization(w^2+1);  
    , m5 K: B! ~+ L, u1 \( `4 {Discriminant(Q5) ;
      y* D2 _: x+ d: EFundamentalUnit(Q5) ;
    ! R7 v4 H3 f6 Z2 O: {, k7 KFundamentalUnit(M);
    5 K- v8 h# M7 \# o- @- VConductor(Q5) ;
    : _9 ]2 I1 k1 s* e
    , {. s" u5 D( p& \Name(M, -1);
      Q! p, e- d* R# G/ C% |0 `Conductor(M);
    4 Q- h1 R# I+ ^4 C3 _ClassGroup(Q5) ; ) j1 o* e7 Z9 q7 g+ c; K
    ClassGroup(M);
    7 v; H) J: t0 K% t% S5 \  cClassNumber(Q5) ;
    ( E, g- [' N- O7 o- @ClassNumber(M) ;0 R0 P9 o# Z' Q5 [& X! r
    PicardGroup(M) ;
    & c. j2 p) ^  L  }, [PicardNumber(M) ;3 }4 `) R* F3 ?7 r5 q" c3 X

      n4 p# t. p% r5 bQuadraticClassGroupTwoPart(Q5);) \# `2 o7 T) R3 h, b" h! Y  B, x
    QuadraticClassGroupTwoPart(M);
    ) V" I% K5 x# ~' ?; Y# BNormEquation(Q5, -1) ;7 E+ V/ ^- A) Q% d2 q
    NormEquation(M, -1) ;6 n& a3 D% R5 s7 F4 m4 Z
    ! N, T- \, p# L) r
    Quadratic Field with defining polynomial $.1^2 + 1 over the Rational Field
    7 I, _# _9 g1 J" |% `1 q8 ^+ t1 pUnivariate Polynomial Ring in w over Q5
    7 o% q2 J  n% G1 t8 JEquation Order of conductor 1 in Q56 d7 R! c6 w7 U* p+ D
    Maximal Equation Order of Q53 d; P2 t) M6 j5 I* k# G
    Quadratic Field with defining polynomial $.1^2 + 1 over the Rational Field
    ; O' f- D3 i2 M+ lOrder of conductor 625888888 in Q5
    + d) ~- j- j3 `2 M- Qtrue Quadratic Field with defining polynomial $.1^2 + 1 over the Rational Field
    % N; i4 W6 h; ~  e" v4 ltrue Maximal Equation Order of Q5
    8 l+ T$ U, S4 jtrue Order of conductor 1 in Q5: T5 |4 ]! R$ r7 _' Y: }' @+ [8 J
    true Order of conductor 1 in Q5
    1 t; N/ `; _/ y( T& @  Ktrue Order of conductor 1 in Q5! t7 p6 b* N& W4 n9 A8 |/ [
    [% Z+ {% G) x$ ?% M9 E; x
        <w - Q5.1, 1>,
    + x# a0 V+ r  d- F    <w + Q5.1, 1>  @1 e: I: {2 d2 q& I9 Z: Z
    ]
    9 S6 M. u  L& O+ D7 Y3 I2 p8 @-4& d, v9 L: u$ X9 q: ^
    % s, G8 n0 @  B
    >> FundamentalUnit(Q5) ;9 Z; E# K7 S; B  U3 a: i1 }( J+ |
                      ^
    ' r! d' g4 g: T5 s- _' j3 J" iRuntime error in 'FundamentalUnit': Field must have positive discriminant
    8 G; e, H# L, `4 j' E2 P7 W- j9 v2 a# p* F% o5 e6 R, X
    * a. _2 H  `+ N$ K6 a  v
    >> FundamentalUnit(M);0 n; O$ A( u  L9 L, r
                      ^
    + o) I! F" c- {  `1 E5 bRuntime error in 'FundamentalUnit': Field must have positive discriminant( m* F4 \+ S/ w) b4 C8 s' O
    3 p" z1 F9 ~6 p! J& m7 m$ _: P$ p- q% M4 v
    45 o3 ^* d) H9 V. U
      D- t6 h$ `4 e) x. n4 r
    >> Name(M, -1);
    ) K% d: o5 n4 B/ I& _% _( u5 O' a       ^0 {% X* O2 ^% w" p
    Runtime error in 'Name': Argument 2 (-1) should be in the range [1 .. 1]& k7 o8 l; L3 j, u

    ) ^) B3 f4 }- z, Z' q& S1
    6 P" G2 Q4 _1 |5 `6 U0 Q- P1 Z" ?: fAbelian Group of order 1! s3 C' t6 c; u: L4 s
    Mapping from: Abelian Group of order 1 to Set of ideals of M, E0 Y; D4 E0 H" i/ E7 t0 p5 J
    Abelian Group of order 1
      p+ ^/ ?- z9 C# l% wMapping from: Abelian Group of order 1 to Set of ideals of M& [. w; `5 |+ {7 J. t( O  Q7 V
    1
    + r) X5 r/ U. Q& U5 ~1
    3 E% t8 ^+ n! _- V1 T( A6 t7 yAbelian Group of order 13 T6 L! T( U) z9 p5 K0 g! i
    Mapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no. N- v, ^9 ~! A0 r
    inverse]+ F6 f4 a) K; I% R6 n4 o& |- y
    12 b: f& ~5 b7 v; s% ^. d- n% C
    Abelian Group of order 12 U, z, x5 J/ ?/ X" ^  q% b" t4 `6 \
    Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant
    . g1 c" o% x. Z1 Z4 V-4 given by a rule [no inverse]
    ; X& F9 i1 h) V0 VAbelian Group of order 14 y6 V" {) g5 }/ T
    Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant3 a" p& t# z# ~
    -4 given by a rule [no inverse]7 I5 n1 p* R- L
    false: ~2 @  R- w4 l* n( T9 y
    false; @4 `# K) n7 {0 G9 y
    ===============
    : I9 ]0 d# l7 J$ ~
    # B: p, k  S5 [; fQ5:=QuadraticField(-3) ;
    / Z; j" H) U7 o5 [Q5;
    + C' o+ Y& v1 S4 U2 M6 e+ {- G. i2 c8 B3 N
    Q<w> :=PolynomialRing(Q5);Q;
    1 o# V# p9 B* U2 P! ^% i, ~EquationOrder(Q5);
    * P/ T0 e8 ]. C0 x* c6 C5 zM:=MaximalOrder(Q5) ;
    9 i" B; A  T& I6 k# V7 r. Z9 M; tM;
    0 t- [& G% h4 ~% FNumberField(M);! r- a+ h; H9 `
    S1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;( }* r' R* Q: _# V
    IsQuadratic(Q5);
    . d, A9 U3 k2 ?IsQuadratic(S1);) ?, _2 p* @6 e5 x7 `; J; }! g) y
    IsQuadratic(S4);8 a3 \5 A3 p( Y/ \5 i# e9 P$ m" [
    IsQuadratic(S25);* d8 F3 g+ p, G4 C0 [( X9 Q
    IsQuadratic(S625888888);
    3 \+ K3 z$ [3 D: ?0 g: T6 IFactorization(w^2+3);  : Y7 a( T" P( K0 g
    Discriminant(Q5) ;
    ' x0 a/ ?  v# \& O3 T$ j- p8 k+ gFundamentalUnit(Q5) ;
    % @0 w0 B1 l* L( vFundamentalUnit(M);
    6 q: H* O, t) @+ |Conductor(Q5) ;4 y& A+ h" N4 [: W0 j8 A

    / Q1 J) Q. S& g. m$ @7 v% a: WName(M, -3);4 ]& g6 d$ ?; _1 y% s" ]
    Conductor(M);
    4 p( `6 ]* v+ m& @ClassGroup(Q5) ; 1 I9 h) A* _1 G+ I: c3 \4 u. K8 D* U/ q  f
    ClassGroup(M);$ E1 w, J+ D8 P, a$ a$ C4 a7 `
    ClassNumber(Q5) ;
    & t$ a+ m2 I. X: `/ z. wClassNumber(M) ;
    9 r9 Y- r! |6 M8 ^2 ?" D& PPicardGroup(M) ;
    9 B, h$ \6 R% ?, e" r! P+ p) GPicardNumber(M) ;% m3 x9 ^8 v4 [' |$ R; i
    & G+ i7 m- T  Z6 u
    QuadraticClassGroupTwoPart(Q5);" q% \7 h' l, L* C' ?+ C$ y6 F
    QuadraticClassGroupTwoPart(M);
      S4 a4 ?2 z# A! q7 xNormEquation(Q5, -3) ;
    2 y1 y; H. j' q+ h7 eNormEquation(M, -3) ;0 n; |7 _( X6 x, J$ Y

    5 A. T+ l: F; a. A+ X4 e* c# i% X+ `Quadratic Field with defining polynomial $.1^2 + 3 over the Rational Field" A( A+ B( N- O& A6 x
    Univariate Polynomial Ring in w over Q5( _7 r9 L* a- F4 d; a
    Equation Order of conductor 2 in Q5
    % S0 Q" Q, U" N" ~4 {# ^; oMaximal Order of Q5! A; d; b3 @6 r1 ?
    Quadratic Field with defining polynomial $.1^2 + 3 over the Rational Field2 Z* l% F$ G# [7 {( ^# z
    Order of conductor 625888888 in Q5
    " o+ x0 c' d' V. Itrue Quadratic Field with defining polynomial $.1^2 + 3 over the Rational Field
    4 v9 `5 m6 k8 Ntrue Maximal Order of Q5- g8 S& Y% N5 Q  i
    true Order of conductor 16 in Q5! B! W" T1 g6 g$ T* \; ~
    true Order of conductor 625 in Q5
    5 G' V. L* \. C1 S$ P5 Itrue Order of conductor 391736900121876544 in Q5! ]1 S* Y+ |. ?5 F; _1 i2 _
    [! Y- a2 ?6 r" Q5 b/ ^
        <w - Q5.1, 1>,& W. _3 Y% O7 k9 ]. v
        <w + Q5.1, 1>
    % y; g1 F+ z2 b0 p]& ~4 ?" e0 X0 x$ B- D, u
    -35 n8 L. j, @4 y: m1 x6 A6 i

    1 ^0 v4 f3 g% R; e( N>> FundamentalUnit(Q5) ;
    ! ^8 j4 B8 y6 w( P8 k/ k" y                  ^6 f3 v5 E: C) {
    Runtime error in 'FundamentalUnit': Field must have positive discriminant' z' S7 \' L  \# C' }
    + ~0 z6 r* b1 Z5 l& }, l
    ) r- j5 y- Y: x( D& p$ v
    >> FundamentalUnit(M);3 k9 \" n7 L0 g+ q+ W) Y
                      ^' n) E2 q. r& ^/ d' u; [
    Runtime error in 'FundamentalUnit': Field must have positive discriminant
    : F/ _, N8 m  Q# Y
    ( O- l( ^% t% U' l3 ^$ A30 ^0 g1 c, L( Q3 E

    ( E0 {. \2 X4 X! K>> Name(M, -3);
    8 @6 t& c) F: |7 H9 V# Y       ^( q) L( C( A; I! G9 f( p
    Runtime error in 'Name': Argument 2 (-3) should be in the range [1 .. 1]
    , W* ]8 q- z7 {3 {% f% ?- q2 s# `8 X) s$ y' ]
    1
    4 h9 o3 n8 f- Q% m  M5 M; i7 GAbelian Group of order 1
    ; k0 t" c) a+ _' r' B8 kMapping from: Abelian Group of order 1 to Set of ideals of M
    : I: ?3 X- X1 ~4 _% gAbelian Group of order 1% S' h: u! i- I  l2 y2 p3 f
    Mapping from: Abelian Group of order 1 to Set of ideals of M
    * W# d" M& _1 I3 s5 v1) `& O* Z- J: @
    15 v/ V3 O5 T6 F6 h  ^
    Abelian Group of order 1
    % u0 Z! G! B6 l5 F1 u) w! I. Q3 yMapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no* t' @5 o/ d2 b, N% b  B
    inverse]
    1 b$ ?& {" W+ R/ B, O1
    $ K! @4 ?+ t3 J0 w8 Z3 d2 JAbelian Group of order 1) g9 ]& X9 o/ }* S4 g) s
    Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant1 t1 c7 r# [$ p
    -3 given by a rule [no inverse]
    * `& B5 a4 {- o' d, t. Y2 H3 FAbelian Group of order 1
    & g' P$ t, ~. _8 h5 gMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant
    - t5 h* V0 H" l9 j-3 given by a rule [no inverse]
      P8 J8 y- j% Q5 c, Cfalse
    - E* d' ^7 v9 T- r1 `) o6 q8 @1 bfalse
    回复

    使用道具 举报

    74

    主题

    6

    听众

    3289

    积分

    升级  42.97%

  • TA的每日心情
    无聊
    2015-9-4 00:52
  • 签到天数: 374 天

    [LV.9]以坛为家II

    社区QQ达人 邮箱绑定达人 发帖功臣 最具活力勋章

    群组数学建摸协会

    群组Matlab讨论组

    群组小草的客厅

    群组数学建模

    群组LINGO

    回复

    使用道具 举报

    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    本帖最后由 lilianjie 于 2012-1-5 15:20 编辑
    * c% g* G- l, c8 v' l9 x$ a" p5 J& g
    & t5 x/ ]. k& e! G1 l4 pDirichlet character
    $ ^; N. h, y" F5 E3 R& v1 LDirichlet class number formula1 p. L+ L) @: O* k

    8 B' a$ @& Y. ]0 N+ O虚二次域复点1,实点为0,实二次域复点0,实点为2,实二次域只有两单位根
    ( ~$ y* O" O' \. o$ p- Q( h: g& G) ~  P; e: x8 x$ P' ?
    -1时,4个单位根1,-1, i, -i,w=4,            N=4,互素(1,3),    (Z/4Z)*------->C*      χ(1mod4)=1,χ(3mod4)=-1,h=4/(2*4)*Σ[1*1+(3*(-1)]=1
    : ~: ^/ @6 j' v% V! m! I
    . h/ D5 _9 Z5 N+ m/ n% l-3时  6个单位根                             N=3  互素(1,2),    (Z/3Z)*------->C*         χ(1mod3)=1,χ(2mod3)=-1,
    4 ~7 F7 y7 r. n' ?8 d  b4 A: D! {h=-6/(2*3)*Σ[1*1+(2*(-1)]=18 D  F4 m/ U7 G: i' }

    + U( Q( K5 j* Y2 F+ C' ]) n3 c-5时  2个单位根                              N=20   N=3  互素(1,3,7,9,11,13,17,19),    (Z/5Z)*------->C*         χ(1mod20)=1,χ(3mod20)=-1, χ(7mod20)=1, χ(9mod20)=1,χ(11mod20)=1,χ(13mod20)=1,χ(17mod20)=1,χ(19mod20)=1,
    ( }  Z( N+ v9 Z4 X' L/ L3 |/ Z- z, L. o# A$ Z9 N; W

    3 O+ O9 K) l& f) b. T: H8 i% z* k) ]" z7 ?. T- O. \4 F2 Z
    h=2/(2*20)*Σ[1*1-3*1-7*1+9*1-11*1-13*1+17*1+19*1]=2; D" h; j+ [& n; x, H) E  U

    5 ], g& U/ q& f# E& k6 U' C9 i2 z# J0 U+ R8 ?

      h  R" v, V9 y4 w9 j5 ~-50时  个单位根                          N=200  B& v$ k" e" u
    回复

    使用道具 举报

    15

    主题

    4

    听众

    113

    积分

    升级  6.5%

  • TA的每日心情
    开心
    2012-1-13 11:49
  • 签到天数: 9 天

    [LV.3]偶尔看看II

    Dirichlet character

    21.JPG (79.18 KB, 下载次数: 223)

    21.JPG

    11.JPG (74.76 KB, 下载次数: 228)

    11.JPG

    回复

    使用道具 举报

    15

    主题

    4

    听众

    113

    积分

    升级  6.5%

  • TA的每日心情
    开心
    2012-1-13 11:49
  • 签到天数: 9 天

    [LV.3]偶尔看看II

    回复

    使用道具 举报

    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    本帖最后由 lilianjie 于 2012-1-9 20:30 编辑
    - `" G, r2 V6 \' x+ o5 b
    ! `6 }- q. B9 ^  j  [+ z& tF := QuadraticField(NextPrime(5));" w( h' U- P% Y& C: d/ x+ ]1 U8 u

    4 A. g0 Q0 s8 X& A0 i/ SKK := QuadraticField(7);KK;# U0 C- }" k/ P
    K:=MaximalOrder(KK);" y3 b6 z, X+ C. W2 X5 J
    Conductor(KK);2 K3 \6 R2 \- [
    ClassGroup(KK) ;
    ( [9 F; E  Z6 k5 IQuadraticClassGroupTwoPart(KK) ;
    0 l" h; K% C  F! T+ eNormEquation(F, 7);
    0 d1 m- |* x2 _; l6 D( T! F  KA:=K!7;A;% i- V7 n; N8 X9 Z
    B:=K!14;B;4 G+ a5 _: q( |7 J$ |
    Discriminant(KK)
    8 k5 D0 j) B' u# F0 z) Z  \9 t  m  i7 i& o' l
    Quadratic Field with defining polynomial $.1^2 - 7 over the Rational Field1 T8 c* g% z! n, U3 r6 T$ X6 j
    28: X0 L" X: [4 R0 P0 O1 Y6 a5 t
    Abelian Group of order 1
    7 v% b  ]9 n  o( \2 UMapping from: Abelian Group of order 1 to Set of ideals of K% Z. D7 j% f) v1 q$ I+ Q* o
    Abelian Group isomorphic to Z/2. r% v6 H* G4 a# r! N7 S. p0 p
    Defined on 1 generator
    # N  W& l) Z4 C1 O/ }) [# tRelations:9 u+ U' v9 E8 B+ x
        2*$.1 = 0! v/ E5 m5 c4 {( {7 ^! f
    Mapping from: Abelian Group isomorphic to Z/2% q' m& c$ r. S5 ]: b
    Defined on 1 generator
    0 Z) s1 p1 h. o9 V5 N; lRelations:
    / ^+ K3 L& D. O2 y1 w    2*$.1 = 0 to Binary quadratic forms of discriminant 28 given by a rule [no 3 E2 Q% b* k* e- n4 R5 K" S
    inverse]4 `5 ]9 O9 a: ]: ?* H3 X# P
    false8 c3 J( W0 w; x" N
    7- n+ y! R) Q+ t, F
    14
    ' ]* j* |4 L: a' K28
    回复

    使用道具 举报

    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    本帖最后由 lilianjie 于 2012-1-10 11:23 编辑
    0 U) w% T2 U" F; A  R) B+ ]6 F) q6 s8 G5 N  @' D$ e% q1 c9 s
    11.JPG
    - r0 d/ _& R9 [+ l7 M3 N$ @- _
    0 V) U/ D! \6 F6 h, o. y2 y 3212.JPG 6 s" F0 c3 ~( f3 O; f- v" {  n

    0 D/ D% z+ S: i2 _+ h3 X! n 123.JPG + q  e+ u" Z2 [

    5 x0 L. ~  Y' ]+ U+ [+ Y1 E0 p# u分圆域:8 ?/ @+ `1 q! a2 x) d5 I
    C:=CyclotomicField(5);C;$ }4 A/ I0 B) v# ^. g9 Y, R
    CyclotomicPolynomial(5);1 I3 W8 D7 t3 b
    C:=CyclotomicField(6);C;6 E0 q6 Y- t" v4 Y0 k, [
    CyclotomicPolynomial(6);: S$ T+ U$ M" h: F
    CC:=CyclotomicField(7);CC;8 @4 A& F  e" w' A! L0 q
    CyclotomicPolynomial(7);
    2 r6 n' B0 K( A' I* T, f3 r  A0 dMinimalField(CC!7) ;" M7 {/ N/ C1 b( U* Y! r7 b
    MinimalField(CC!8) ;
    5 w! h- a* U/ g- J; ]/ i/ RMinimalField(CC!9) ;
    4 \& j, `1 V$ V* B; `MinimalCyclotomicField(CC!7) ;
    / [2 A" W2 h6 iRootOfUnity(11);RootOfUnity(111);
    4 ]# j' u/ s* DMinimise(CC!123);, c* ]2 T3 b9 j8 h* w" m) L
    Conductor(CC) ;7 u6 ?9 y/ C2 O; K; p/ A! [
    CyclotomicOrder(CC) ;9 B/ F8 b0 i% K% ?6 e6 z1 H

    0 q5 r% a4 K3 v  f4 c! F3 D. _- [CyclotomicAutomorphismGroup(CC) ;
    * R5 R+ F4 I9 }; V/ l; N8 t5 X. i- i9 L0 C# l
    Cyclotomic Field of order 5 and degree 4% h: y6 e) k3 `2 m& X7 y7 o9 U: M2 P
    $.1^4 + $.1^3 + $.1^2 + $.1 + 1
    2 R# u' j6 V0 u5 K+ h6 nCyclotomic Field of order 6 and degree 2
    ; V9 g! E# B7 w. R$.1^2 - $.1 + 1) t* y/ B) L) T0 m* ?3 p4 y
    Cyclotomic Field of order 7 and degree 6
    ( u! P8 \# D, m* K; s$.1^6 + $.1^5 + $.1^4 + $.1^3 + $.1^2 + $.1 + 1' x4 @. u2 a9 D* x. W. _
    Rational Field
    & ?2 ~. y9 P$ }/ w' m5 l6 W$ mRational Field/ `  M9 p1 n4 E
    Rational Field
    % i, N  D+ I' Y7 t  CRational Field
    ) f# w6 w" L, I$ X- czeta_11. d4 C! G# u# b# c- G+ `
    zeta_111& v/ ~( ^$ Z  \8 F2 P% O7 s4 y
    123
    $ Q+ g$ E! q  U+ x& K# q* J7
    ( @. G/ j5 N# z5 R/ ?" e7$ l* H- }& f9 @' ?/ P# U+ m
    Permutation group acting on a set of cardinality 68 U+ M( b# e3 v
    Order = 6 = 2 * 3
    0 ?' z' s/ g% n" D    (1, 2)(3, 5)(4, 6)1 w2 @" Y' e9 ]% \$ N( o9 X
        (1, 3, 6, 2, 5, 4)
    ( r; K. }* g; S& q. YMapping from: GrpPerm: $, Degree 6, Order 2 * 3 to Set of all automorphisms of
    9 Y! O/ {6 F# V$ t  a6 \1 NCC
    2 b! ^. _5 i+ f, |1 c0 bComposition of Mapping from: GrpPerm: $, Degree 6, Order 2 * 3 to GrpPerm: $, 7 v. L* K# l8 c! C+ X5 P( R
    Degree 6, Order 2 * 3 and
    , O4 H% W) u  t& X: o* a3 vMapping from: GrpPerm: $, Degree 6, Order 2 * 3 to Set of all automorphisms of 1 n7 t0 p, b1 s# s5 T2 ~# e
    CC
    回复

    使用道具 举报

    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    本帖最后由 lilianjie 于 2012-1-10 17:41 编辑   x% O$ p! L5 \5 M
    lilianjie 发表于 2012-1-9 20:44 : I, u! ?: \7 S$ ?8 V
    分圆域:
    , s' K; T2 S  R2 h! D% d' f7 dC:=CyclotomicField(5);C;
    1 y. ~9 t+ M9 n# Y: D! @3 ?, Y) P$ UCyclotomicPolynomial(5);
    ' e% H. C) B: K

    3 l& Y3 P/ i4 S分圆域:
    6 D/ [. Y# `0 G6 \3 u* I+ r分圆域:123
      w0 O8 |, N* A  u* u3 }7 h0 a4 x2 p) }- W& O
    R.<x> = Q[]. b* g9 \  h& M/ G
    F8 = factor(x^8 - 1)
    7 q- r7 K# ^! G" H8 @- GF8; L1 f4 r, `8 {, l1 k: i

    ' z& n& J% v4 t2 A. K5 M+ m4 v(x - 1) * (x + 1) * (x^2 + 1) * (x^4 + 1)(x - 1) * (x + 1) * (x^2 + 1) * (x^4 + 1) : S3 X& g1 o& C9 ?9 i1 e

    $ U' b' u0 R9 v- qQ<x> := QuadraticField(8);Q;1 B1 \$ L3 _4 r# T$ w% O/ q  F# Z2 J
    C:=CyclotomicField(8);C;' {' ]+ P4 z" T2 S
    FF:=CyclotomicPolynomial(8);FF;& |; F1 H5 b6 ~: `

    : c& g' L/ Q& b$ B6 \F := QuadraticField(8);
    % P; |' R+ ^" D: gF;- u' S% G) @/ A3 i( [
    D:=Factorization(FF) ;D;
    4 s. A. ^( v7 d. O. s7 OQuadratic Field with defining polynomial $.1^2 - 2 over the Rational Field% b2 D% Y! m8 b
    Cyclotomic Field of order 8 and degree 4
    / Q- U% r: u& [! D7 w; b( t, }$.1^4 + 1
    1 D( e4 k4 r( O9 B6 n- \5 bQuadratic Field with defining polynomial $.1^2 - 2 over the Rational Field3 ^3 w" `% l5 @, d8 S: E9 E
    [
    0 M: u) h: u# b$ t9 m: A3 y    <$.1^4 + 1, 1>' N  t! L1 N  L& q& v0 J5 o. G) k
    ]7 _- Z% z" ~' P; F: B8 S: v2 t
    ( I! W4 M: P6 c5 Z5 w
    R.<x> = QQ[]
    & D7 @  \5 m- G* K. ~) H% J/ c9 XF6 = factor(x^6 - 1)
    " u8 G2 y" y5 d" R0 E1 j/ ]( pF6" G7 p; {  }, s) ^+ n3 B  z' t( P' ]3 O

    1 m6 F( |8 X5 ](x - 1) * (x + 1) * (x^2 - x + 1) * (x^2 + x + 1)(x - 1) * (x + 1) * (x^2 - x + 1) * (x^2 + x + 1) 2 ^* O# r9 w6 J* d) G8 @6 G

    ( y& E" f4 _0 ?0 U& EQ<x> := QuadraticField(6);Q;
    6 R8 l' F# c+ G" SC:=CyclotomicField(6);C;4 N' v( z$ C# Y/ L
    FF:=CyclotomicPolynomial(6);FF;6 V/ u( `# ^9 \2 D; U+ _9 Z# v  F

    * Y5 l! k# b, VF := QuadraticField(6);( Y& Z5 K% Y2 m3 p; D3 O
    F;; R  r. G/ Q3 m/ v) O; ^6 j) n* T+ O
    D:=Factorization(FF) ;D;
    " `# F, _6 J0 p( A  o2 @  j' g1 ?Quadratic Field with defining polynomial $.1^2 - 6 over the Rational Field
    : j1 w; f6 k$ S8 b; nCyclotomic Field of order 6 and degree 2
    & O3 p. \3 W# I$.1^2 - $.1 + 1# {5 A- S; K) l* y8 E
    Quadratic Field with defining polynomial $.1^2 - 6 over the Rational Field
    8 j( p& N7 O8 V' }1 a[
    # r* `" }. N4 S( ~9 Y    <$.1^2 - $.1 + 1, 1>
    4 U, d6 X2 M2 s$ B8 C% E8 g]% b$ ]5 l" `. h7 k# W& c

      l/ T- |- F5 }& F# \R.<x> = QQ[]
    8 O3 Y( \6 b5 o0 Q$ M0 X3 hF5 = factor(x^10 - 1)
    # O8 v  G) G9 R# H) D0 YF5- ]  }2 u/ U7 j3 m' H
    (x - 1) * (x + 1) * (x^4 - x^3 + x^2 - x + 1) * (x^4 + x^3 + x^2 + x +7 ]: k0 S* I6 ~
    1)(x - 1) * (x + 1) * (x^4 - x^3 + x^2 - x + 1) * (x^4 + x^3 + x^2 + x + 1)* R* \) i3 f8 X$ I! `

    - A5 T6 w2 a& m, Z, v. qQ<x> := QuadraticField(10);Q;
    - W% n" Y' S0 v' gC:=CyclotomicField(10);C;, e& c# |" C; _' U1 V8 ~% |# B+ _
    FF:=CyclotomicPolynomial(10);FF;
    ! A' F& H5 C/ g; w( _! L) g6 `
    ! a, L; ~; z& B& [3 N$ I* ?$ }F := QuadraticField(10);
    8 v! P* u2 Q& D/ U6 y5 \F;
      q0 n0 d% L- D) RD:=Factorization(FF) ;D;4 s5 m/ E3 C2 E9 v9 Q
    Quadratic Field with defining polynomial $.1^2 - 10 over the Rational Field# g$ M, u3 [: k5 Z+ e2 u! _! U3 T
    Cyclotomic Field of order 10 and degree 4
    " }) V# z4 L+ F) H& P$.1^4 - $.1^3 + $.1^2 - $.1 + 1
    8 L0 v. `& Z* p2 s' fQuadratic Field with defining polynomial $.1^2 - 10 over the Rational Field
    " q, X  W5 w& C8 t2 U[
    , K- s! B  B8 Z2 I0 L    <$.1^4 - $.1^3 + $.1^2 - $.1 + 1, 1>! @8 l5 V7 n7 v/ V
    ]

    c.JPG (217.37 KB, 下载次数: 227)

    c.JPG

    aaaa.JPG (98.21 KB, 下载次数: 224)

    aaaa.JPG

    aaa.JPG (157.27 KB, 下载次数: 226)

    aaa.JPG

    aa.JPG (126.91 KB, 下载次数: 228)

    aa.JPG

    a.JPG (242.91 KB, 下载次数: 243)

    a.JPG

    回复

    使用道具 举报

    15

    主题

    4

    听众

    113

    积分

    升级  6.5%

  • TA的每日心情
    开心
    2012-1-13 11:49
  • 签到天数: 9 天

    [LV.3]偶尔看看II

    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-7-24 04:46 , Processed in 1.042245 second(s), 101 queries .

    回顶部