5 A. T+ l: F; a. A+ X4 e* c# i% X+ `Quadratic Field with defining polynomial $.1^2 + 3 over the Rational Field" A( A+ B( N- O& A6 x
Univariate Polynomial Ring in w over Q5( _7 r9 L* a- F4 d; a
Equation Order of conductor 2 in Q5 % S0 Q" Q, U" N" ~4 {# ^; oMaximal Order of Q5! A; d; b3 @6 r1 ?
Quadratic Field with defining polynomial $.1^2 + 3 over the Rational Field2 Z* l% F$ G# [7 {( ^# z
Order of conductor 625888888 in Q5 " o+ x0 c' d' V. Itrue Quadratic Field with defining polynomial $.1^2 + 3 over the Rational Field 4 v9 `5 m6 k8 Ntrue Maximal Order of Q5- g8 S& Y% N5 Q i
true Order of conductor 16 in Q5! B! W" T1 g6 g$ T* \; ~
true Order of conductor 625 in Q5 5 G' V. L* \. C1 S$ P5 Itrue Order of conductor 391736900121876544 in Q5! ]1 S* Y+ |. ?5 F; _1 i2 _
[! Y- a2 ?6 r" Q5 b/ ^
<w - Q5.1, 1>,& W. _3 Y% O7 k9 ]. v
<w + Q5.1, 1> % y; g1 F+ z2 b0 p]& ~4 ?" e0 X0 x$ B- D, u
-35 n8 L. j, @4 y: m1 x6 A6 i
1 ^0 v4 f3 g% R; e( N>> FundamentalUnit(Q5) ; ! ^8 j4 B8 y6 w( P8 k/ k" y ^6 f3 v5 E: C) {
Runtime error in 'FundamentalUnit': Field must have positive discriminant' z' S7 \' L \# C' }
+ ~0 z6 r* b1 Z5 l& }, l
) r- j5 y- Y: x( D& p$ v
>> FundamentalUnit(M);3 k9 \" n7 L0 g+ q+ W) Y
^' n) E2 q. r& ^/ d' u; [
Runtime error in 'FundamentalUnit': Field must have positive discriminant : F/ _, N8 m Q# Y ( O- l( ^% t% U' l3 ^$ A30 ^0 g1 c, L( Q3 E
( E0 {. \2 X4 X! K>> Name(M, -3); 8 @6 t& c) F: |7 H9 V# Y ^( q) L( C( A; I! G9 f( p
Runtime error in 'Name': Argument 2 (-3) should be in the range [1 .. 1] , W* ]8 q- z7 {3 {% f% ?- q2 s# `8 X) s$ y' ]
1 4 h9 o3 n8 f- Q% m M5 M; i7 GAbelian Group of order 1 ; k0 t" c) a+ _' r' B8 kMapping from: Abelian Group of order 1 to Set of ideals of M : I: ?3 X- X1 ~4 _% gAbelian Group of order 1% S' h: u! i- I l2 y2 p3 f
Mapping from: Abelian Group of order 1 to Set of ideals of M * W# d" M& _1 I3 s5 v1) `& O* Z- J: @
15 v/ V3 O5 T6 F6 h ^
Abelian Group of order 1 % u0 Z! G! B6 l5 F1 u) w! I. Q3 yMapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no* t' @5 o/ d2 b, N% b B
inverse] 1 b$ ?& {" W+ R/ B, O1 $ K! @4 ?+ t3 J0 w8 Z3 d2 JAbelian Group of order 1) g9 ]& X9 o/ }* S4 g) s
Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant1 t1 c7 r# [$ p
-3 given by a rule [no inverse] * `& B5 a4 {- o' d, t. Y2 H3 FAbelian Group of order 1 & g' P$ t, ~. _8 h5 gMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant - t5 h* V0 H" l9 j-3 given by a rule [no inverse] P8 J8 y- j% Q5 c, Cfalse - E* d' ^7 v9 T- r1 `) o6 q8 @1 bfalse
4 A. g0 Q0 s8 X& A0 i/ SKK := QuadraticField(7);KK;# U0 C- }" k/ P
K:=MaximalOrder(KK);" y3 b6 z, X+ C. W2 X5 J
Conductor(KK);2 K3 \6 R2 \- [
ClassGroup(KK) ; ( [9 F; E Z6 k5 IQuadraticClassGroupTwoPart(KK) ; 0 l" h; K% C F! T+ eNormEquation(F, 7); 0 d1 m- |* x2 _; l6 D( T! F KA:=K!7;A;% i- V7 n; N8 X9 Z
B:=K!14;B;4 G+ a5 _: q( |7 J$ |
Discriminant(KK) 8 k5 D0 j) B' u# F0 z) Z \9 t m i7 i& o' l
Quadratic Field with defining polynomial $.1^2 - 7 over the Rational Field1 T8 c* g% z! n, U3 r6 T$ X6 j
28: X0 L" X: [4 R0 P0 O1 Y6 a5 t
Abelian Group of order 1 7 v% b ]9 n o( \2 UMapping from: Abelian Group of order 1 to Set of ideals of K% Z. D7 j% f) v1 q$ I+ Q* o
Abelian Group isomorphic to Z/2. r% v6 H* G4 a# r! N7 S. p0 p
Defined on 1 generator # N W& l) Z4 C1 O/ }) [# tRelations:9 u+ U' v9 E8 B+ x
2*$.1 = 0! v/ E5 m5 c4 {( {7 ^! f
Mapping from: Abelian Group isomorphic to Z/2% q' m& c$ r. S5 ]: b
Defined on 1 generator 0 Z) s1 p1 h. o9 V5 N; lRelations: / ^+ K3 L& D. O2 y1 w 2*$.1 = 0 to Binary quadratic forms of discriminant 28 given by a rule [no 3 E2 Q% b* k* e- n4 R5 K" S
inverse]4 `5 ]9 O9 a: ]: ?* H3 X# P
false8 c3 J( W0 w; x" N
7- n+ y! R) Q+ t, F
14 ' ]* j* |4 L: a' K28