- 在线时间
- 2 小时
- 最后登录
- 2015-4-26
- 注册时间
- 2015-4-24
- 听众数
- 8
- 收听数
- 0
- 能力
- 0 分
- 体力
- 6 点
- 威望
- 0 点
- 阅读权限
- 10
- 积分
- 2
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 1
- 主题
- 1
- 精华
- 0
- 分享
- 0
- 好友
- 1
升级   40% 该用户从未签到 - 自我介绍
- 程序猿
 |
利用BP网络训练加法,代码如下,我是按照书上的公式敲的代码。对于最终的实验结果,有的结果还行,有的结果误差太多了,有人能帮我看看怎么回事吗?万分感谢!* Q2 b6 A& r; i+ V
ps:不要吐槽语言。我知道这是c c++杂交体。 - #include <stdio.h>. V. B0 V* v2 W9 V; M% m
- #include <time.h>
- + g' t+ i3 T2 C; l3 m; x\" o* Q#include <math.h>
- 5 C; N q* C& J\" f#include <stdlib.h>
- ! a& H4 H/ p1 w\" }1 T4 z#include <iostream>
- ( \6 X: d, T/ e, |! J- lusing namespace std;1 Z8 y0 ^, x( r: n
- #define DATA 800$ U0 G% ?. g1 h5 ]* o
- #define IN 2
- 1 A$ F% S4 U I* E& n0 J+ L#define OUT 1
- : }9 L6 X3 I! B( C: @#define NEURON 45, E0 A! L4 _+ [( a9 [
- #define TRAINC 20000
- - Y! c5 W. ~% N3 ^
- 7 _* n; G5 P/ G& X# c- Odouble Fx(double x)2 m& ?' X: W' h: a9 e; }6 D) U/ z
- {& K9 q8 w5 |& W6 R( Q
- return 1 / (1 + exp(-1 * x));
- 2 M* V\" O) l4 W3 i- G}
- $ @4 z) `) r# z* j* I# t% x+ w//La输入层 Lb隐藏层 Lc输出层
- 5 n* w$ c8 ]. B+ o//样本输入2 q7 _7 r- {2 v# k/ J% `1 p
- double La[DATA][IN];
- : p' u* D! l2 @. w6 W( S5 N//样本输出0 m6 i2 U2 W, h) b
- double Lc[DATA][OUT];- K3 O# ^& M4 q0 u! c' `
- //La->Lb权重0 a8 |7 f. Y ~- `' E
- double Wab[NEURON][IN];
- \" J8 L! @$ P. F# ~//Lb->Lc权重
- : m4 ]/ s% A- ~$ ~2 Vdouble Wbc[OUT][NEURON];\" e\" I. ?5 {$ m. f
- //样本输入每个向量的最小值,最大值;输出...' y7 T7 X3 B% L
- double MaxIn[IN], MaxOut[OUT], MinIn[IN], MinOut[OUT];' [4 i\" @' w, F) j8 f\" [) {; l
- ( r6 V; o9 A+ m, I0 k& G4 F
- //Lb层输出7 v% I Y! w; C
- double LbOut[NEURON];
- ! d. P n: m- k//Lc层输出2 p' f) S\" }; A7 `; K
- double LcOut[OUT];
- 8 h. v+ X: E2 c3 O. B
- # t2 v' V! M( [% H9 I/ `1 w//Lc层单元的一般化误差
- - l. j7 u$ p- _; ddouble Dc[OUT];
- & a: z& L& w- ?+ g% U//Lb层单元的一般化误差
- ( d8 q1 g5 N3 p) adouble Db[NEURON];) ~- g( W; F/ i3 N( P% _4 m$ u
- 7 T3 I* B. y2 T2 o0 M/ v6 a
- //设置样本数据* B& F! P6 v; u$ c# n
- void setSample()! f# ~ T6 N/ t\" A7 C* r\" `8 @
- {9 y9 C% S1 s0 w! q- D
- srand((unsigned)time(NULL));% a( f\" p, a1 A
- int i, j;
- 6 k! y$ t [, c, @ for (i = 0; i < DATA; i++)3 K1 L9 ?+ P \) u9 w
- {% ?. Q8 o% W$ Q. F, I7 r/ t2 |9 u5 s
- for (j = 0; j < IN; j++)1 n* q; e# Z4 b% D2 T
- {
- o% c) ^) S1 S# f/ }7 v' C La[j] = rand() % 1000 / 10.0;
- : A8 B- L. v' O }
- & ^0 M1 C) O- z/ o 5 k; v( H* f- [5 D8 E3 `# C
- for (j = 0; j < OUT; j++)- l, p! u8 }9 m7 c
- Lc[j] = La[0] + La[1];2 {; b8 W k3 s0 K
- }
- \" M! K$ s+ G1 H2 G+ h. e}\" m1 @\" V2 R! y. P- q8 y/ o
- //初始化BP网络:权重,阈值(隐含节点+输出节点)
- $ ?; k. @6 S$ dvoid initNet()! e5 ^\" D1 ]$ k D E1 w- h
- {& n1 P/ @4 h: i
- srand((unsigned)time(NULL));- K0 t Y5 Y5 M* V+ w/ Q; \
- //两部分的权值设置随机值【-1,1】
- $ m! I* e$ |+ f! O# u int i, j;
- \" H* A& \- j$ q8 q\" O for (i = 0; i < NEURON; i++)! o7 |# S/ r; Q1 S- w
- for (j = 0; j < IN; j++)! O' K\" j1 v0 N
- {4 F* O/ j\" \6 j* f* i* h5 y7 N
- Wab[j] = rand()*2.0 / RAND_MAX - 1 ;
- ! i5 J( L# ?* _) T: m Wab[j] /= 20;0 \. V2 Q2 K/ [4 G; s: V
- }
- . y! C- k, h6 M, `9 P
- - R- x( H# Z# w; N* N- @& l( K# m for (i = 0; i < OUT; i++)9 l2 r* R# s\" q& t- b9 }
- for (j = 0; j < NEURON; j++)/ N5 U' O( Z$ k' k# |
- {: C+ }, O: \5 u8 _: j* V
- Wbc[j] = rand()*2.0 / RAND_MAX - 1;: p, L5 t& D2 c/ E+ i( X$ L# E3 b5 V' o
- Wbc[j] /= 20;& [ V$ q' _/ T1 D' s6 N6 D
- } ?* N/ D4 e$ H/ A7 ^
- & t7 e\" h9 ^( U. }
- //找出每个向量最小最大值,并进行归一化
- # v* a$ h( ^$ [2 c for (i = 0; i < IN; i++)
- \" p5 f0 y' U% Z {
- ) z* F7 n9 t& h; R ( i$ D# d+ s! c z. [3 ~
- MinIn = MaxIn = La[0];
- . S0 I* C5 T7 p6 x9 p7 }! I S for (j = 0; j < DATA; j++)
- / E: Q7 ?5 Q Q J5 m1 a# t! Z { Y5 m5 O/ }4 ]+ r( X5 m% q
- if (MinIn > La[j])
- 3 P2 P* T& B9 h1 W; n- o! r# O MinIn = La[j];5 \; o( \\" u- z1 w0 }: ?8 L r
- if (MaxIn < La[j]): j# x# l6 `' r9 P u
- MaxIn = La[j];, N) ^' I; u+ [- p! x* e/ g0 h
- }( a3 q- h9 f& w7 x ^; R* U0 }
-
- & ^8 }6 h/ e) z
- 3 N6 Z' R3 N, f4 K7 Y5 k }
- 1 ~; H8 }1 K7 I9 u% {% A% j
- 2 a6 ]! T2 V# q) Q4 Y\" q for (i = 0; i < OUT; i++)/ J\" f5 l6 C/ Z- c4 k: G4 C& H$ I
- {$ i6 y/ `, f, T+ e% S
- , d8 X& ]# f$ i2 P; \+ w
- MinOut = MaxOut = Lc[0];\" l- n! Q) i2 i% E% S
- for (j = 0; j < DATA; j++)
- 2 u+ K7 ?+ ?( X {. D- |0 {# X! s/ I! X/ `3 _
- if (MinOut > Lc[j])4 w3 D; G( N a/ I/ t/ n, A; T
- MinOut = Lc[j];
- 5 i* S& U1 P0 @9 t% B if (MaxOut < Lc[j])
- ~& u8 h6 j1 D MaxOut = Lc[j];
- 8 p+ [# V! h* ~% M: [0 ~, _6 m! W. P/ ] }
- 1 Z! U1 S1 R3 a4 n p% @$ X7 h1 `\" r7 U
- }
- 0 h2 V/ k6 c- z: p! P, c5 U 0 H$ ?* W! `& q$ O- C\" q' q
- //归一化
- 2 Y5 ?% c; x4 Z: u' @7 [ for (i = 0; i < IN; i++)
- 4 \ [! U7 X$ u6 i for (j = 0; j < DATA; j++)
- : r& T5 W% {# y: @$ r5 u. f La[j] = (La[j] - MinIn + 1) / (MaxIn - MinIn + 1);; C8 S9 S; l, S- Z. q* U
- * [\" b7 z( s( V9 m6 E\" P
- / X. u9 q1 J4 g+ A7 x
- for (i = 0; i < OUT; i++)
- + d+ j1 n3 Z/ ]) T* J! b for (j = 0; j < DATA; j++)& l- z! `! g4 b0 g; K7 B9 S
- Lc[j] = (Lc[j] - MinOut + 1) / (MaxOut - MinOut + 1);
- / L; H/ A' E3 W' a w) q3 m 0 i- [% v9 E9 \( L
-
- 3 u) |4 P$ c( C* u# [5 v3 x3 e & w. M6 |\" M/ Z2 X\" T/ v2 e$ S
- }
- 0 }' j& u5 ~( w' b- q, Mvoid getActiveVal(int dataIndex)) i {8 D( |+ ~0 B C; S
- {
- 3 B* ~5 P ]. W* r int i, j;3 ?- B\" _. Y; D- C! Y
- double sum;: i' \0 Q+ p# [) \
- for (i = 0; i < NEURON; i++)8 s\" z' q Y0 T! v, G9 n) p
- {( E B\" \! G8 m. H
- sum = 0;
- % l& r( I G3 i2 J for (j = 0; j < IN; j++)- ^6 x$ Y+ p: k* Z! T
- sum += Wab[j] * La[dataIndex][j];; E# n! I, t2 G- i8 Z r7 M
-
- & g8 }) w, b# S, e0 G0 S LbOut = Fx(sum);: P8 W& u8 @4 G\" U0 R6 ^ O2 R5 U$ ], Z
-
- 6 h4 e2 X2 Y5 c! K }
- 9 ]: K4 N3 h/ ~8 _$ p( N7 j
- ! p; B/ s) w' A$ n& y2 Q: U; ^ for (i = 0; i < OUT; i++)- \* W8 [6 n& J& Y/ K5 A% {/ q
- {
- ' g5 ^3 `; Y7 F& [4 f sum = 0;+ A0 g\" a [% v9 {
- for (j = 0; j < NEURON; j++). @1 z6 q/ P O4 [4 ]
- sum += Wbc[j] * LbOut[j];
- 3 j2 T. v( s3 p 1 V/ ?4 U+ g/ M+ T& [4 i9 ~* J
- LcOut = Fx(sum);
- ! {& O1 J) w5 f* C }
- 4 e- B6 r9 q\" m5 R q% u: Z}
- ( n8 o+ { x/ y8 O9 B\" s2 k3 L- wvoid backUp(int dataIndex)8 \/ ?: l5 [* N! d. c' O1 R' x# d
- {9 _8 n/ ~! ~1 e8 p: E/ o z' v
- int i, j;. T8 g7 y& @: S\" S! w; J; l E
- double sum = 0;
- % Q1 x# t# n. o6 i //Lc层单元的一般化误差
- $ U) o3 v' `& a( t* _7 o for (i = 0; i < OUT; i++)
- 8 }$ a$ N+ o% a4 v0 P: O\" O1 P Dc = LcOut * (1 - LcOut)*(Lc[dataIndex] - LcOut);
- 0 b ^\" W% @$ b& C- X/ O 0 k: j! Y2 _. E, C+ k) A) g5 R
- //Lb层单元的一般化误差, s+ i5 E! R- Z\" k ~! X; R% H
- for (i = 0; i < NEURON; i++)
- ! S\" @, ^( L% J6 O5 w5 L0 f {4 N ~0 O( _$ Q I% T
- sum = 0;
- ( G% h0 @9 p$ Z8 g7 D/ n4 M for (j = 0; j < OUT; j++) n% i! C. P5 z% m, }% D0 n
- {( ?+ G- d+ ^: @9 @
- sum += Wbc[j] * Dc[j];) ?\" g: V5 U% t1 @; }4 k6 R
- }! h; t\" c( U/ ^# R
- Db = LbOut * (1 - LbOut) * sum;
- % O* ]5 j9 z+ \) A' F- c }0 R7 c* e* }\" y2 d0 G
-
- / |( W; y. g/ k1 p) t) a double beta1 = 0.08, beta2 = 0.1;
- 4 y8 g. p6 a5 V+ ^ g & S3 f- @: ^8 T; g0 y2 F. T) E
- for (i = 0; i < OUT; i++)* O5 ^$ Q+ m# V8 l ?# V0 W\" z; f
- for (j = 0; j < NEURON; j++) R1 h4 J/ _- s' q) H f
- Wbc[j] += beta1*LbOut[j] * Dc;$ W7 w% |. ?/ i
-
- 5 x& j6 T- H$ r# [/ Q, g, u6 a% L for (i = 0; i < NEURON; i++)! s6 O2 X2 ?2 k6 f\" D/ }
- for (j = 0; j < IN; j++)
- 6 u1 b, a# k: K Wab[j] += beta2*Db * La[dataIndex][j];- _\" {* q a% d\" [' U8 k* U, k
-
- ; \! g$ E! H& w: V1 D4 C5 x2 |1 K% {0 q
- 9 B$ [0 j# B1 w\" W: a9 J3 [
- % v+ h# o% @* Q$ C+ F. R/ j}
- 5 \/ w$ `4 V5 Z2 N1 V2 ?+ s! M- \' ] f
- ! F, D9 ^9 L: w, _/ R! K$ \0 N, D- rdouble result(double d1, double d2), o) n5 J5 @, f! k( ~) O
- {
- ! T& K+ o* x/ n% w int i, j;* H\" t* H1 `: j( U2 B. b
- double sum;, r4 @, K( U\" m5 ^7 V8 [( T5 t2 q
- d1 = (d1 - MinIn[0] + 1) / (MaxIn[0] - MinIn[0] + 1);;
- # e4 U/ c4 G5 [$ v7 z6 ~, l) H d2 = (d2 - MinIn[1] + 1) / (MaxIn[1] - MinIn[1] + 1);, V- m8 I8 ^4 ]! ^+ q# N0 N
- / E! u; R1 _+ X( ?5 S5 z
- for (i = 0; i < NEURON; i++)# r+ | k8 F, M; w% B
- {
- ! {6 F' ]* s* D; h sum = 0; ( D: ]7 _/ o# b; F\" L, ?
- sum = Wab[0] * d1 + Wab[1] * d2 ;
- 6 X. H+ @ X\" y8 w% S3 c; K, q' g\" @ LbOut= Fx(sum);! o: R8 C* s$ j8 d+ s\" T3 q8 O
- }; g1 u/ E- j9 d, \& P
- O3 G8 |- c, c
- sum = 0;- z# {( e# v\" h+ a7 _& g
- for (j = 0; j < NEURON; j++)
- * A% J+ T3 ?3 W$ m; |8 u5 z\" q sum += Wbc[0][j] * LbOut[j];2 ?' V0 P( W1 N+ d9 _0 Q
-
- 9 H$ o5 p* ~) ^) |. b6 h LcOut[0] = Fx(sum);
- + m) Z8 b% |9 ~
- 1 M\" t( S0 H% s4 G return LcOut[0] * (MaxOut[0] - MinOut[0] + 1) + MinOut[0] + 1;
- 7 L$ |( C d H' w: K0 I p- {/ W/ l
- ' l; I# [* \; h( u\" d
- ^9 k9 G$ g' Q/ e; q}; f1 Z( C$ t9 D% O\" ]& i; ~
- void train()
- D/ G! p0 ~ x! a# \{0 H+ b1 E; f( ~: p4 \, p
- int i, j, no = 0;
- \" {# Y% D# X% a2 { double e = 0;
- 1 L# L6 g6 M' y3 h, P do{
- & Q u$ @+ J- {1 a9 T e = 0;
- : D; D2 h: _( v- F for (i = 0; i < DATA; i++)
- - V! P3 k. y: P* m {& d7 u/ G\" s$ }6 ?8 m
- getActiveVal(i);
- 4 _, @: k% B) K, J$ A backUp(i);$ y9 x& { s) D. ^- e
- e += 0.5*pow((LcOut[0] - Lc[0]), 2);
- 8 \\" P; G* T( M }* f8 p% `+ T3 x) `0 M4 B! D
-
- 8 M+ Q( i- C# K2 D cout << no << " " << e << endl;5 f1 E' ^0 I7 x( z\" S3 Z
- no++;
- 8 m6 r1 V L# m } while (no < 1000);
- & \ W: P8 v: |/ H- {% d& x. U: D& E, Z
- 1 K l) e P% q\" e( V( F\" l # N$ |2 u5 I8 f. p
- }
- : W% p) q\" s; E) Q) P* c1 M - A3 o2 r8 Y& d1 S* r* [
- void main(int argc, char const *argv[]) _! R( o1 f2 p
- {9 a/ L9 h; c7 f1 s5 h
-
- 0 M l! L% f\" A+ l. i setSample();
- ( R9 ]; P2 U. o) j+ A initNet();
- ; x2 x7 L. o8 h7 m train();0 w3 D7 n9 W- P* D8 e' |5 u, M
- double a, b;8 x# U5 q! L, y0 o
- while (1)
- # P% l! V- O8 W' @2 P) g {
- ! v7 k! i2 s0 L- K\" Y cout << "print two numbers" << endl;
- , @4 T' {, b; B4 M* ]- }$ ^; R cin >> a >> b;- ?1 Z6 |5 K' _; C* W
- cout << "result:" << result(a, b) << endl;
- , d3 d' y4 Y* B2 r8 U9 K4 l! T9 N }
- 6 ~. Z7 H% f* O, p8 |# E 2 D\" r+ Z\" p6 g9 f! v
- 9 t, x0 U/ e6 q; Z
- }
) A C. O; i8 s1 R" H8 {
- F, B1 ^; s3 i4 \" o
|
zan
-
总评分: 体力 + 1
查看全部评分
|